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whether the detection of environmental uncertainty might
also prime processing of positivity.

The transient hyper-vigilance induced by exposure to
unpredictable tones suggests that healthy subjects can end
up looking a lot like anxious subjects when exposed to the
right situations. Perhaps this basic vigilance function in
response to uncertainty is quite similar across anxious
and healthy individuals, at least initially. What might
differ between these individuals is how the prefrontal
cortex handles the calculation of actual danger when
environmental uncertainty is encountered. Those without
a disorder might not cross a diagnosable line because,
when appropriate, they are able to counter with a pre-
frontal cortical response that overrides, regulates and
ultimately quells this initial amygdala hyper-responsive-
ness [8,10–13]. Indeed, this regulatory function appears
compromised in pathological anxiety [14]. In short, at least
a portion of the healthy amygdala acts as if it has an
anxiety disorder – searching for threat in response to
uncertainty. This design enables the amygdala to operate
based on principles that are more primal and rigid [2,15]
while the more educated and flexible prefrontal cortex
possesses the ability to bend these rules. Overt behavior
ends up being the balance struck between these processes
and therein lies a basis for individual differences.

For those specifically interested in amygdala function,
the study by Herry, Bach and colleagues reminds us
that although amygdala output has an important role in
emotional responding, the associative functions of the
amygdala are primary and ubiquitous in nature. That is,
the influence of the amygdala is constant as it monitors
the environment for events that have predicted clear
outcomes in the past. If clear predictive signals are lacking,
the amygdala can boost vigilance (e.g. lower sensory
thresholds throughout sensory cortex [5]) in response to
uncertain events, in an attempt to help determine any
causal relationships between such events [7]. When appro-
priate, the amygdala (via extensive efferent circuits) can
then give rise to an emotional-state change [2,5,6]. In the
human subjects studied by Herry, Bach and colleagues,
amygdala response to unpredictable tones did not evoke a
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measured change in emotional state in its own right, but
it did modulate emotional behavior during subsequent
biologically-relevant situations. Thus, higher amygdala
activity can precipitate, but might not necessarily dictate,
a change in your emotional state. This should be comfort-
ing news. You are not a prisoner of your emotions. In
the face of uncertainty, the amygdala just gives you a
jump-start. What you do with it is what makes you. . . ‘you.’
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The integration of functional magnetic resonance imaging
(fMRI) and electrophysiological methods, such as electro-
encephalography (EEG) or magnetoencephalography
(MEG), is highly attractive to the cognitive neuroscientist,
because it promises a temporospatial resolution that
cannot be obtained with either technique alone. In
fMRI-constrained source analysis, the task-related spatial
information from the fMRI is used to weight or constrain
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the EEG source analysis [1] and to elucidate the activation
sequence of cognitive processes [2–4].

In their discussion of fMRI-constrained source analysis,
Debener et al. [5] correctly state that the assumption of a
correspondence between neural generators of haemody-
namic signals and the EEG might not always be correct.
They use this point to argue that the analysis of single-trial
covariation between EEG and blood oxygen level depend-
ent (BOLD) signals is preferable. Their proposed single-
trial EEG–fMRI analysis uses trial-to-trial variability of
statistically independent components (IC) derived from
the EEG signal to derive predictors for the local fMRI
signal [5].

However, this single-trial approach does not use any
constraints on physically plausible locations of the sources
of the scalp signal. It could, therefore, identify brain areas
whose metabolic activity, as measured by fMRI, also coar-
sely correlates with the IC-derived predictor, although it is
not the generator. This can occur when an area is tightly
coupled with the generator but with a different time course
or frequency profile of electrical activity. In principle, it
would also be necessary to quantify the mutual correlation
of all IC-derived predictors.

The single-trial EEG–fMRI analysis assumes linear
correlation of the BOLD signal with the single-trial IC
feature of interest. It might thus miss neurophysiological
processes in which both the IC feature of the EEG and the
Box 1. FMRI-constrained source analysis

The spatial information from functional magnetic resonance imaging

(fMRI) can be used to provide physical constraints for the solution of

the electromagnetic inverse problem of determining the brain sources

from scalp activity using a model of multiple discrete sources [1]. In

this approach, event-related potentials/fields (ERP/ERF) and fMRI data

are acquired separately or simultaneously and co-registered into a

common coordinate system (Figure Ia–c). The possible locations of

the electric/magnetic sources are derived from the task-related fMRI

activity (Figure Ie). The source analysis then models the source time

courses and reflects activity in the cluster with millisecond resolution

(Figure Id).

Figure I. FMRI-constrained source analysis.
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BOLD signal deviate with the same sign from the baseline
but are modulated with the opposite sign by changing task
demands, such as memory load [3]. Finally, the single-trial
approach faces the inherent problems of independent com-
ponents analysis (ICA), such as the pre-existence of knowl-
edge about the number of sources required by current
algorithms [6].

In contrast to the single-trial correlation approach,
which uses statistical information to identify sources but
disregards the physical validity of the result, fMRI-con-
strained source analysis assumes that sites with task-
correlated fMRI activation are potential sources of the
scalp EEG (and MEG) and then tries to reconstruct
the electrical source activity based on a physical (over-
determined) model (Box 1). In addition, fMRI-constrained
source analysis does not assume a linear coupling. The
quality of a discrete inverse model depends on the dipo-
larity of the sources and a correct estimate of their number.
Hence, validation steps are necessary without any guar-
antee that a source model that successfully passes these
steps can always be found.

When the interest is in the haemodynamic correlate of a
specific EEG/IC amplitude modulation, single-trial corre-
lation has currently no alternative. Conversely, the fMRI-
constrained source analysis identifies the time courses of
electrical generators underlying the scalp signal. Both
methods share the assumption that generators of scalp
Validation procedures: A ‘crosstalk’ analysis excludes the possibi-

lity that the model overestimates the number of sources [3,7] (Figure

If). Conversely, the risk of underestimating can be reduced by

lowering statistical thresholds for the fMRI data and assessing

whether any additional sources make a notable contribution in

explaining scalp ERP/ERF variance (Figure Ig). Scanning the brain

with an additional (’probe’) source added to the current solution will

detect locations of possible generators not included in the current

model; these locations will be indicated by a large fraction of scalp

signal variance explained by the probe source (e.g. posterior brain

activity in Figure Ih).
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EEG signals and fMRI activation overlap to some extent. It
is the scientific question that determines which method
will be appropriate.
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Bledowski and coworkers advocate functional magnetic
resonance imaging (fMRI)-constrained source analysis of
event-related potentials (ERPs), that is, trial-averaged
electroencephalogram (EEG) responses, over the single-
trial based EEG–fMRI integration technique we recently
proposed [1]. The authors focus on three arguments.

First, they argue that our EEG-informed fMRI analysis
approach might misidentify cortical generators of EEG
activity by not taking into account physically plausible
locations of ERP sources. We agree that if the goal is to
identify the neural sources of ERPs, spatial constraints are
valuable and should be used in the analysis. Independent
component analysis (ICA) does not explicitly include this
information, but it is readily gleaned by a comparison of
the location(s) identified by fMRI with the dipole source
analysis of the independent component(s). Indeed, we
have previously shown a close correspondence between
the dipole source location of the selected independent
component and the single-trial EEG–fMRI integration
result [1]. Therefore, although the ICA-based trial-by-trial
approach can easily incorporate ERP source analysis, the
reverse is not feasible. We consider it an advantage of our
analysis that it is, in principle, not limited to the identi-
fication of common generators of EEG and fMRI. By con-
trast, the method can deliberately be used to identify
functionally defined neural networks that are correlated
with temporally well-localized EEG features, using the
spatial resolution of fMRI [2].

Second, Bledowski and colleagues argue that the EEG-
informed fMRI analysis approach assumes a linear corre-
lation between fMRI and EEG features. Although a linear
model is a natural starting point for this analysis scheme,
the proposed method is, in fact, not limited to a linear
correlation. The method can be generalized to any non-
linear relationship simply by constructing corresponding
non-linear fMRI regressors from the single-trial EEG
features of interest [3].

Third, Bledowski et al. argue that the trial-by-trial
approach suffers from the assumptions inherent in ICA.
In particular, they state that current ICA algorithms
require knowledge about the number of sources contribut-
ing to themixed data. The infomax ICA algorithmwe use is
among the most widely applied algorithms [4] and does not
in practice require this knowledge. However, the authors
might be referring to the underlying problem, which is the
selection of those independent components that can be
reliably identified. We have successfully used different
strategies to tackle this issue [5,6] and, consistent with
others, have found ICA to be of great value – in particular
for the direct integration of EEG and fMRI [1,2,7,8]. By
contrast, the ‘number of sources’ problem applies to the
fMRI-constrained ERP analysis approach because fMRI
does not unambiguously identify the number of possible
ERP dipole sources. It is worth recapitulating that fMRI
could be blind to some EEG phenomena and vice versa.
Hence, none of the currently available EEG–fMRI integ-
ration approaches unambiguously tells how many sources
are relevant.

To advance EEG–fMRI integration, we need to further
our understanding of how these signals relate to each
other. However, the fMRI-constrained ERP source-
analysis approach does not have much potential in addres-
sing the fundamental question of EEG–fMRI coupling. The
sole consideration of trial-averaged data in each modality
neglects the amount of information that can be extracted
from fluctuations across trials. By contrast, the trial-by-
trial approach can help to identify which fractions of EEG
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