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Discrimination 
of finger movements 
by magnetomyography 
with optically pumped 
magnetometers
Antonino Greco 1,2,3,10*, Sangyeob Baek 1,2,3,4,10, Thomas Middelmann 5, Carsten Mehring 6,7, 
Christoph Braun 1,2,3, Justus Marquetand 1,2,3,8,11 & Markus Siegel 1,2,3,9,11

Optically pumped magnetometers (OPM) are quantum sensors that offer new possibilities to 
measure biomagnetic signals. Compared to the current standard surface electromyography (EMG), 
in magnetomyography (MMG), OPM sensors offer the advantage of contactless measurements of 
muscle activity. However, little is known about the relative performance of OPM-MMG and EMG, 
e.g. in their ability to detect and classify finger movements. To address this in a proof-of-principle 
study, we recorded simultaneous OPM-MMG and EMG of finger flexor muscles for the discrimination 
of individual finger movements on a single human participant. Using a deep learning model for 
movement classification, we found that both sensor modalities were able to discriminate finger 
movements with above 89% accuracy. Furthermore, model predictions for the two sensor modalities 
showed high agreement in movement detection (85% agreement; Cohen’s kappa: 0.45). Our findings 
show that OPM sensors can be employed for contactless discrimination of finger movements and 
incentivize future applications of OPM in magnetomyography.

Spin exchange relaxation free (SERF) optically pumped magnetometers (OPM) are quantum sensors for 
measuring magnetic flux signals with a sensitivity in the order of few 10 fT/

√
Hz . SERF-OPM are based on 

a zero-field resonance caused by the Zeeman-effect1 detected be laser spectroscopy of spin-polarized alkali 
metal vapor2. In recent years, several studies have shown the potential of OPM for measuring biomagnetic 
signals of the brain, heart, nerves, or muscles, opening up new opportunities for the research and application 
of human biomagnetism3–9. In particular, in addition to more traditional applications in magnetoencephalog-
raphy (MEG)5,10,11, OPM are also increasingly utilized for studying skeletal muscles12–14. The spatial flexibility, 
small physical size (few cubic centimeters) and possibility of bi- or triaxial signal acquisition of OPM, enable 
the contactless investigation of muscle physiology in space and time14. Magnetomyography (MMG) has several 
general advantages in comparison to the current gold standard for non-invasive muscle studies, surface elec-
tromyography (EMG)15,16. In contrast to electric currents, magnetic fields are far less affected by the different 
tissue layers between the electromagnetic source and the skin surface, resulting in less distorted signals12,15,17,18. 
Furthermore, in contrast to MMG, EMG electrodes require contact with the skin where the presence of a charge 
at the electrode–skin interface creates noise voltages that can interfere with the signal18,19.
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Magnetic flux and electric potentials originate from the same ionic currents and have comparable temporal 
and spectral profiles16,20, but the magnetic flux direction is orthogonal to the source (electric current). Newly 
available OPM offer up to triaxial simultaneous signal acquisition ( 

⇀

Bx,
⇀

By, and
⇀

Bz ) with one sensor, i.e., three-
dimensional spatial information on the magnetic flux vector per sensor. The gain in spatial information per 
sensor in comparison to EMG could be particularly relevant for human–machine interfaces based on muscle 
signals, such as e.g. prosthesis control21–23. Considering this hypothesis and the current progress in EMG-based 
human–machine interfaces24, in the present proof-of-principle study, we sought to investigate the potential of 
biomagnetic measurements as a new modality for human–machine interfaces. Specifically, we investigated the 
ability to differentiate individual finger movements based on EMG and OPM-MMG of the finger flexor muscles 
in a single human participant.

Methods
Participant
A single human participant volunteered for the study. The participant of the study was male, 28 years old, 1.76 m 
tall, and 72 kg weight (BMI = 23.2 kg/m2). The participant was one of the authors and gave informed consent 
before participating in the study. The study was conducted in accordance with the Declaration of Helsinki and 
approved by the ethics committee of the University of Tübingen.

Experimental design
The experiment was designed to record the magnetic activity of the right flexor muscles of the fingers Digit II and 
V (index and little finger; DII and DV). Before the measurements, we conducted a high-resolution ultrasound 
(Mindray TE7, 14 MHz-linear probe) to determine the position and axis of the muscles that were activated by 
DII and DV movement and to ensure that these were predominantly activated by movements of the free fingers. 
Then, muscle activation was measured on the forearm using simultaneous OPM-MMG and EMG (Fig. 1A,B, 
4 bipolar EMG and 4 biaxial OPM channels). Every 5 s, an auditory cue indicated when to execute the finger 
movement. In the first session, the participant flexed DII for 30 trials, in the second session, the participant 
flexed DV for 30 trials, and in the third session, the participant alternated between DII and DV for 30 trials. 
The participant was instructed to flex and extend his fingers over a total duration of 1 s and to use a consistent 
speed throughout the testing. Throughout the experiment, finger movements were measured using a light meter. 
Involuntary movements of fingers DIII and DIV next to the target fingers would have affected the light meter 
measurements. Thus, we employed a cast to immobilize these adjacent fingers.

Sensors
The muscle strands of the individual fingers (DII and DV) were imaged using high-resolution muscle ultrasound 
(Mindray TE7, 14 MHz-linear probe) to determine the longitudinal axis of the muscles. All recordings were 
collected inside a magnetically shielded room (Ak3b, VAC Vacuumschmelze, Hanau, Germany). Here, 8 para-
magnetic EMG surface electrodes (Conmed, Cleartrace2 MR-ECG-electrodes) were placed in a bipolar montage 
along the longitudinal axis of the muscle. A ground electrode was placed on the right shoulder. 4 biaxial OPM 
(QZFM-gen-1.5, QuSpin Inc., Louisville, CO, USA) were placed in between the EMG electrode pairs about 
15 mm above the skin surface. The movement of the fingers was measured using a fiber optic that measured the 
distance between the finger and the fiber optic (Keyence Digital Fiber Sensor FS-N10).

Figure 1.   (A) Photograph depicting the experimental setting, with colored arrows showing the orientation of 
OPM axes. (B) Conceptual representation of the sensors modalities and the location they were placed. Colored 
arrows represent the orientation of OPM axes, with the z-axis (green) being perpendicular to the skin and the 
y-axis (blue) parallel to the forearm.
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Data acquisition
The analog output of the OPM electronics and the EMG signals were recorded using the data acquisition elec-
tronics of an MEG system (CTF Omega 275, Coquitlam, BC, Canada) that was installed in the magnetically 
shielded room in which all measurements were performed. OPM and EMG signals were recorded through the 
direct analog input and EEG input channels of the data acquisition system, respectively. Both the OPM and EMG 
recordings were acquired with a sampling rate of 2343.8 Hz. The employed OPMs were capable of measuring 
two components of the magnetic field vector: the y- and z-axis. They provided a magnetic field sensitivity of 15 
fT/

√
Hz in a bandwidth of 3–135 Hz, an operating range below 200 nT, and a dynamic range of a few nanoteslas. 

To adapt to a non-zero magnetic background field, the sensors are equipped with internal compensation coils 
that can cancel magnetic background fields of up to 200 nT in the sensing hot rubidium vapor cell (cell size 
3 × 3 × 3 mm).

Data preprocessing
Data analysis was performed using Python (Python Software Foundation, version 3.7, http://​www.​python.​org). 
Data from 8 OPM channels (4 OPM sensors with 2 independent channels for Y and Z axis per sensor) and 4 
bipolar EMG channels were demeaned and filtered using a 25–100 Hz band-pass zero-phase fourth-order but-
terworth infinite impulse response (IIR) filter. We employed the same 100 Hz lowpass for OPM end EMG because 
of the passband of the OPM sensors (3–135 Hz) and to allow for a fair comparison between both modalities. 
Line noise was filtered using a 49–51 Hz band-stop zero-phase fourth-order butterworth IIR filter. Then, we 
extracted the envelope of the signal by taking the absolute value of the Hilbert transformed signal and resampled 
the data at 200 Hz.

Data sampling
We designed our data analysis pipeline to approximate online detection of finger movements with 100 ms tem-
poral resolution25. This this end, we employed a cross-validated classification of 100 ms temporal window as DII 
motion, DV motion or no motion based on the EMG or OPM-MMG signals (see also next section). We first 
aggregated the data from all three recording sessions. Then, to rule out spurious classification due to signal auto-
correlation within trials, we split all trials into distinct “training” and “test” trials. From these trials we randomly 
sampled 100 ms windows. We sampled 500 random 100 ms windows of each class to build the training dataset 
and 100 random 100 ms windows for the test dataset. DII motion and DV motion windows were drawn from 0 
to 300 ms after the onset of each finger movement. No motion windows were drawn from 1500 to 0 ms relative 
to the finger movement onset. Because of the 5 s trial length and 1 s finger movement duration, these temporal 
intervals ensured optimal sampling during finger motion and rest.

Classification analysis
We performed classification analysis using a supervised learning approach and a deep convolutional neural net-
work implemented in Tensorflow26. The network architecture (Fig. 3A) consisted of an input layer that received 
batches of data consisting of matrices T × C , where T is the number of time points and C is the number of chan-
nels. Thus, the resulted input was a 3-dimensional array N × T × C , where N is the batch size that we set to 250. 
This tensor was passed to a residual block27, consisting of a point-wise (kernel size of 1× 1 ) 1-dimensional convo-
lutional layer with 128 filters, stride 1 and without the bias term and padding, followed by a batch normalization 
(BN)28 layer and a gaussian error linear unit (GELU)29 activation function. Then, the residual block continued 
with a second zero-padded 1-dimensional convolutional layer with a kernel size of 3× 3 and C filters, stride 1 
and without the bias term, followed by a BN layer and GELU function and concluded by adding the input array to 
the resulted array so far and finally applying a GELU function. After the residual block, the network architecture 
comprised a zero-padded 1-dimensional convolutional layer with a kernel size of 3× 3 and 16 filters, stride 2 
and with the bias term and GELU function. Then, the output of this layer was flattened and passed to a Dropout 
layer with a dropout rate of 0.1. From here, the output array was passed to two fully-connected (FC) layers with 
Z units and GELU as activation function (here, Z=100), both followed by a Dropout30 layer with a dropout rate 
of 0.1. Finally, the output layer consisted of an FC layer of F units and softmax activation function (here, F=3), 
where each unit encoded either a finger movement or both as not moving. The network was trained using 250 
epochs, the categorical cross-entropy as loss function and Adam31 as optimizer with a learning rate of 0.01, β1 
as 0.9 and β2 as 0.999. We trained one model on the OPM signal and one on the EMG signal. Model evaluation 
was performed with a stratified fivefold cross-validation by computing the accuracy of the model between the 
ground truth and its predictions. Notably, we z-scored the data by computing the moments (sample mean and 
standard deviation computed on the sampled windows dimension) on the train set and then applying them to 
the test set to avoid possible confounders.

Feature importance analysis
We investigated how the models generated predictions in the test set by exploiting a recent approach in the field 
of explainable deep learning32, namely the integrated gradients33, that allowed us to perform a feature importance 
analysis. For each sample of the test set, we first linearly interpolated the sample (i.e., a T × C matrix) with a 
“baseline” matrix of zeros with the same dimensionality, using 6 levels of transparency linearly sampled from 0 
to 1. We passed these interpolated samples to the model and compute the partial derivative (i.e., the gradients) 
of the loss function with respect to the input. Next, we combined these gradients by computing a numerical 
approximation of their integral over the interpolated samples using the Riemann sum approximation and nor-
malized them to make sure they were in the same scale. We averaged these values across the temporal dimension 
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of the input and across the samples of the test set to obtain a single value for each fold of the cross-validation 
scheme and for each channel.

Inter‑rate reliability analysis
We assessed the consistency of the OPM-MMG and EMG model predictions by computing two metrics of inter-
rater reliability. The first one was the percentage agreement, which simply quantifies the percentage of predictions 
for which both models predicted the same class. The second metric was Cohen’s Kappa, defined as the probability 
of agreement between the two models normalized by probability of agreement expected by chance.

Statistical analysis
Statistical analyses were conducted on the comparison between the accuracy values of the two models against 
the empirical chance level, separately for each model. The empirical chance level was computed using a per-
mutation test approach, by permuting the labels of the train set and repeating the cross-validation for 1000 
times to obtain a null distribution. P-value was obtained as the number of values found in the null distribution 
that exceeded the observed value, while the effect size (Cohen’s d ) was computed as the difference between the 
observed value and the mean of the null distribution, divided by its standard deviation. We also compared the 
percentage agreement values, the Cohen’s Kappa values and the integrated gradients values against the resulting 
null distribution as above. For the direct comparison between the accuracy of the EMG and OPM models, we 
ran two tests specifically suited for comparing the performance between two classifiers34,35. First, we used the 
5 × 2 cross-validation F-test by repeating 5 times a twofold cross validation and testing both models on the same 
data. Thus, we computed the pseudo f-statistic and the p-value using an F distribution with 10 and 5 degrees of 
freedom35. Finally, we also compared the models’ performance using the McNemar test, by computing a 2 by 2 
confusion matrices between the models’ predictions. Then, we computed the McNemar statistic and the p-value 
using a X2 distribution with one degree of freedom34.

Results
We collected data from a single human participant by measuring muscle activation on the forearm (Fig. 1A) to 
detect flexion movements of the index (DII) or little finger (DV) and simultaneously recording magnetic and 
electric signals using 4 biaxial OPM sensors and 4 bipolar surface EMG electrodes, respectively (Fig. 1B).

We computed the temporal envelope of 25–100 Hz power of all MMG and EMG signals (see methods), 
aggregated the data from all the three sessions, and computed the time-course of the signal envelope relative to 
the onset of DII (Fig. 2A) or DV (Fig. 2B) finger motion for each channel and sensor modality. The visual inspec-
tion of movement-locked envelopes suggested that both, EMG and MMG captured muscle activity during finger 
movement and that EMG had a higher signal-to-noise ratio during finger movement relative to the pre-motion 
baseline. Furthermore, the pattern of results suggested that channels positioned on the ulnar side of the forearm 
(EMG-2, EMG-4, OPM-2YZ and OPM-4YZ) were measuring signals more during DV motion, while sensors on 
the radial side (EMG-1, EMG-3, OPM-1YZ and OPM-3YZ) were measuring signals more during DII movement.

Classification analysis
To quantify these results and to compare the two sensor modalities, we classified finger movements from EMG 
and MMG signals. Specifically, we performed a multiclass classification analysis on 100 ms temporal windows 
of either EMG or MMG signals using a Deep Residual Convolutional Neural Network27 (Fig. 3A). The 3 classes 
to predict were whether finger DII was moving, finger DV was moving or both fingers were not moving. We 
trained two models, one for each sensor modality, using a stratified fivefold cross-validation scheme with a 
nested sampling procedure.

Figure 2.   (A) Line plots showing the time course of the aggregated data of the DII finger movement across the 
three sessions and divided by channel. (B) Line plots showing the time course of the aggregated data of the DV 
finger movement across the three sessions and divided by channel.
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We plotted the models’ predictions as a density plot on a 2-dimensional simplex where vertices represented 
the three classes (Fig. 3B). Visual inspection of these plots showed qualitatively similar distributions across sensor 
modalities. To assess model convergence, we plotted the loss function (categorical cross-entropy) as a function 
of the epochs used for training the models for both EMG and MMG models (Fig. 3C). Both models reached 
their plateau performance around 100 epochs, with the EMG model converging faster than the MMG model.

To quantitatively assess both models’ performance, we next computed the confusion matrix between the 
models’ prediction and ground truth (Fig. 3D). Both models showed high-performance in the classification task, 
with similar patterns of errors and accurate predictions. All three states could be significantly (compared to a null 
distribution) classified by both models with an overall accuracy of 95.31% ( p < 0.001 , d = 34.41, 95% CI [32.89, 
35.92]) and 89.06% ( p < 0.001 , d = 53.74, 95% CI [51.38, 56.11]) for EMG and MMG, respectively (Fig. 3E). The 
EMG accuracy was significantly higher than the MMG accuracy (Fig. 3F, F(10,5) = 10.66, p = 0.009, d = 2.97, 
95% CI [2.78, 3.16], 5 × 2 cvtest; X2(1) = 9.78, p = 0.002, Cohen’s g = 0.22, McNemar test).

Feature importance analysis
After having established the models’ performance, we investigated which channels the models relied mostly 
on to make predictions. We conducted a feature importance analysis exploiting recent advances in explainable 
methods in deep learning32 such as integrated gradients33. We computed integrated gradients for each channel 
across cross-validation folds and compared them against a null distribution to test their significant contribution 
to models’ predictions. We found EMG model significantly relied on all channels (Fig. 4A, all p < 0.002), even 
though the channels positioned on the ulnar side of the forearm had a higher effect size (EMG-2 d = 79.39, 95% 
CI [75.91, 82.88], EMG-4 d = 24.27, 95% CI [23.21, 25.34]) compared to the others (EMG-1 d = 5.03, 95% CI 
[4.81, 5.26], EMG-3 d = 5.28, 95% CI [5.04, 5.52]). For the MMG model, we found that it significantly relied on 
all channels (all p < 0.018) but OPM-1Y, OPM-3Y and OPM-4Y (all p > 0.05 ). We also found that the effect size 
was generally larger on the ulnar side for the Z-axis (OPM-2Z d = 18.24, 95% CI [17.43, 19.05], OPM-4Z d = 
3.66, 95% CI [3.49, 3.84]) compared to the opposite side (OPM-1Z d = 9.74, 95% CI [9.30, 10.17], OPM-3Z d = 
2.79, 95% CI [2.65, 2.93]).

Inter‑rate reliability analysis
Finally, we investigated the model agreement, by directly comparing their predictions. We computed a consensus 
matrix, where the row and column entries of the matrix where the MMG and EMG predictions, respectively 
(Fig. 4B). We found that their predictions were highly aligned. For all three individual states as well as for the 

Figure 3.   (A) Schematic of the network architecture. Left: full network architecture. Right: residual block 
construction. (B) 2-dimensional simplex density plots of EMG (red) and MMG (blue) models’ predictions 
divided by classes. (C) Line plots of the loss function across the epochs for EMG (red) and MMG (blue) models. 
(D) Confusion matrices of the EMG and MMG models’ performance. (E) Results of the permutation test on 
the accuracy of the EMG (red) and MMG (blue) models. The density plots are the null distributions obtained 
separately for each model, while the vertical lines are the observed accuracy values, averaged across folds. (F) 
Results of the 5 × 2 cross-validation F-test. Scatter dots are individual folds, while error bars represent standard 
deviation.
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average across all states the agreement between MMG and EMG models was significantly higher than expected 
by chance (Fig. 4C, mean percentage agreement = 85.26%, p < 0.001, d = 48.79, 95% CI [46.65, 50.94]). We also 
observed that the average Cohen’s kappa of 0.45 between the two models’ predictions was significantly higher 
than expected by chance (Fig. 4D, p < 0.001, d = 33.68, 95% CI [32.19, 35.16]).

Discussion
In this proof-of-principle study, we measured muscle activation using OPM-MMG and EMG to detect finger 
movements. We found that both sensor modalities were able to discriminate DII, DV and non-movement. Our 
EMG results add to previous studies showing the capability to discriminate finger movements with EMG36–38 
by demonstrating finger movement discrimination using an end-to-end learning framework based on only 4 
EMG channels without explicit feature extraction. Our OPM results are, to the best of our knowledge, the first 
demonstration of finger movement discrimination with OPM-MMG. We show that also for OPM-MMG an 
end-to-end learning framework can be adopted for efficient movement discrimination.

We found better performance for the EMG model as compared to the OPM-MMG model. This likely reflects 
a lower signal-to-noise ratio (SNR) of OPM-MMG. On the one hand, this may reflect a genuinely lower sensor 
SNR. On the other hand, this may be due to geometrical factors. While the surface-EMG was attached to the 
skin of the forearm, the OPM sensors were positioned above the skin and independently with respect to the 
forearm. Thus, both the distance between sensors and muscles and their relative motion was larger for OPM-
MMG than for EMG.

The feature importance analysis revealed that both sensor modalities relied more on channels positioned 
on the ulnar side of the forearm to classify finger movements. This can be explained by the fact that the flexor 
digitorum muscles (DII-DV) are positioned more on the ulnar side of the forearm than the radial side. Notably, 
the z-axis (perpendicular to the skin) of the OPM sensor, positioned on the ulnar side of the forearm (OPM-2Z 
and OPM-4Z), was the feature most used by the model. This highlights the relevance of the spatial axis of MMG 
measurements and suggests that the skin perpendicular axis may be particularly suited to differentiate the signals 
of finger flexors. Finger movements involve complex synergies between different muscles and motor units39. 
Future studies may investigate to which extent the finger-movement specific OPM-MMG signals identified in 
the present study reflect such synergistic or individual muscle activations.

We found that OPM-MMG and EMG models were highly consistent in their prediction of finger movements. 
This demonstrates the potential of OPM-MMG as an alternative to EMG, since both do not only have similar 
classification performance, but also consistent prediction patterns. As OPM-MMG allows contactless measure-
ments, it may be particularly suited for clinical applications in which skin contact is undesirable, such as e.g. 
measurements in autistic patients40 or patients with skin-diseases.

Some limitations of this study that point towards future research directions need to be considered. First, 
measurements were performed in a single participant. Thus, although the results provide a proof-of-principle 
and show that the SNR of OPM-MMG is sufficient for use in single subjects, further studies with larger sam-
ples are required to validate the results and estimate population variance. Second, we placed sensors only on 
the ventral forearm because we focused on palmar flexion movements of the fingers. Future studies may add 
sensors on the dorsal forearm to also exploit extensor muscles’ signal. Third, we classified finger movements of 
two well-separated fingers and by using a cast to allow only the fingers of interest to move. Future studies are 
required to investigate the performance of OPM-MMG for the classification of more complex, naturalistic and 
unconstrained finger movements. Finally, we collected all data in ideal, magnetically shielded conditions, which 
is different from real-world scenarios. Magnetic noise in unshielded, real-world scenarios prevents OPM-MMG 

Figure 4.   (A) Results of the permutation test on the integrated gradients values representing the feature 
importance scores for each channel and sensor modality, i.e. EMG (red) and MMG (blue for y-axis and green 
for z-axis). The density plots are the null distributions, while the vertical lines are the observed values, averaged 
across folds. (B) Consensus matrix between EMG and MMG models’ predictions. (C) Permutation test showing 
the percentage agreement values between EMG and MMG models’ predictions. The density plot is the null 
distribution, while the vertical line represents the observed percentage agreement, averaged across folds. (D) 
Permutation test showing the Cohen’s Kappa values between EMG and MMG models’ predictions. The density 
plot is the null distribution, while the vertical line represents the observed Cohen’s Kappa, averaged across folds.
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based on current OPM technology, e.g., for neuroprosthetics applications. However, magnetic shielding may 
not be required in the future given the rapid technological development of magnetometers based on Nitrogen-
Vacancy-Centers (NV-center)41 or Complementary Metal–Oxide–Semiconductor (CMOS)42 technology, which 
both can operate in unshielded environments. Furthermore, more research is required to investigate the extent to 
which naturalistic movements in residual magnetic fields will influence muscle signals and how magnetometer 
can be ideally placed to measure muscle activity in real-world applications.

In sum, our findings show that OPM sensors can be employed to discriminate finger movements and incen-
tivize future applications of OPM in magnetomyography.

Data availability
The data that support the findings of this study are available from the corresponding authors upon request.
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