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Multivariate analysis methods are widely used in neuroscience to investigate the presence and structure of neural
representations. Representational similarities across time or contexts are often investigated using pattern
generalization, e.g. by training and testing multivariate decoders in different contexts, or by comparable pattern-
based encoding methods. It is however unclear what conclusions can be validly drawn on the underlying neural
representations when significant pattern generalization is found in mass signals such as LFP, EEG, MEG, or fMRI.
Using simulations, we show how signal mixing and dependencies between measurements can drive significant
pattern generalization even though the true underlying representations are orthogonal. We suggest that, using an
accurate estimate of the expected pattern generalization given identical representations, it is nonetheless possible
to test meaningful hypotheses about the generalization of neural representations. We offer such an estimate of
the expected magnitude of pattern generalization and demonstrate how this measure can be used to assess the
similarity and differences of neural representations across time and contexts.

1. Introduction

Is the neural representation of a behavioral variable stable across
time? Does it change between contexts or experimentally manipulated
conditions? Are two variables represented in neural activity in similar
ways? Multivariate pattern generalization methods offer a straightfor-
ward way to test such questions. For example, building on widely used
decoding methods, a simple logic can be applied: if a decoding algorithm
trained on neural data from one context works well when tested on data
from another context, the representations of the variable in question in
both contexts are related (Fig. 1A, Kaplan et al., 2015; King and
Dehaene, 2014; Kriegeskorte and Douglas, 2019. For definitions of key
concepts, see Table 1). Consequently, an identical neural readout
mechanism could extract meaningful information in either case. This
interpretation is evident when the measurement level matches the
relevant biological scale: when cross-decoding is successfully applied to
the spiking activity of individual neurons, it is plausible that a similar
readout is implemented in the brain, and that the identified overlap of
neural representations has an effect on neural computation and
behavior.

However, the pattern generalization framework is frequently, and

increasingly, applied to neural data on different measurement scales
(Fig. 1B), from single cell electrophysiology (Bernardi et al., 2020;
Cavanagh et al., 2018; Maggi and Humphries, 2022; Minxha et al., 2020;
Qasim et al., 2019; Sarma et al., 2016; Spaak et al., 2017; Stokes et al.,
2013), via local field potentials (LFP), electrocorticography (ECoG,
Kragel et al., 2017; Norman et al., 2019), electroencephalography and
magnetoencephalography (EEG or MEG, Brandman et al., 2019; Carlson
et al., 2013; King et al., 2016; Kok et al., 2017; Quentin et al., 2019;
Sandhaeger et al., 2019; Strauss et al., 2015; Teichmann et al., 2019,
2018; Wolff et al., 2017), to functional magnetic resonance imaging
(fMRI, Gallivan et al., 2011; Hindy et al., 2016; Jung et al., 2018; Tha-
vabalasingam et al., 2019; Tsantani et al., 2019; van Loon et al., 2018;
Vetter et al., 2014; Walther et al., 2011; Wang et al., 2013; Woo et al.,
2014). In many cases there is a mismatch between the scale of the
representations in question and the measurements taken to compare
them: EEG electrodes, voxels or magnetometers have no biological
relevance and merely serve to sample aggregate measures of neural
population activity. Despite this mismatch, significant pattern general-
ization in population measures is often interpreted strongly to indicate
the generalization of the underlying neural representations (Aller and
Noppeney, 2019; King and Dehaene, 2014; Levine and Schwarzbach,

* Corresponding authors at: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tiibingen,

Germany.

E-mail addresses: florian.sandhaeger@uni-tuebingen.de (F. Sandhaeger), markus.siegel@uni-tuebingen.de (M. Siegel).

https://doi.org/10.1016/j.neuroimage.2023.120258

Received 14 December 2022; Received in revised form 27 May 2023; Accepted 28 June 2023

Available online 8 July 2023

1053-8119/© 2023 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:florian.sandhaeger@uni-tuebingen.de
mailto:markus.siegel@uni-tuebingen.de
www.sciencedirect.com/science/journal/10538119
https://www.elsevier.com/locate/ynimg
https://doi.org/10.1016/j.neuroimage.2023.120258
https://doi.org/10.1016/j.neuroimage.2023.120258
https://doi.org/10.1016/j.neuroimage.2023.120258
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2023.120258&domain=pdf
http://creativecommons.org/licenses/by/4.0/

F. Sandhaeger and M. Siegel

A Weak cross-decoding Strong cross-decoding
: Context A
N o Class 1
o Class 2
3
3 Context B
- e Class 1
o Class 2
Feature 1
B C . .
Mixed population measure
200 (© =445
o
[}
Q.
@®
o
3+
ol Orthogonal neural
representations
2000 Year 2020 (© = 90°)

Fig. 1. Assessing the generalization of neural representations. (A) Illustration of
pattern generalization. The difference vector of multivariate neuronal mea-
surements between two classes (1 and 2) is determined in two contexts (A and
B). If the difference vectors are aligned in both contexts, there is strong pattern
generalization,; if they are orthogonal there is no pattern generalization. The left
scatterplot shows an example of weak negative pattern generalization, the right
scatterplot an example of strong negative pattern generalization. (B) The use of
pattern generalization techniques in neuroscience is rapidly increasing. (C)
Spatial smoothing introduces similarity. Bottom, two distinct sets of neurons
supporting two orthogonal representations (red and blue, respectively). Top,
measurement of the same population with spatial mixing (e.g. by population
measurement sensors). The measured representations are no longer orthogonal,
which would result in significant pattern generalization if computed from the
population signal.

2018; Sanchez et al., 2020; Teichmann et al., 2019, 2018; Zubarev and
Parkkonen, 2018).

Pattern generalization is also used to test other hypotheses. In prin-
ciple, pattern generalization can provide a graded measure of repre-
sentational overlap, and not just the basis for a binary decision about its
presence. Comparing pattern generalization between contexts with the
strength of the individual patterns within each context enables testing
whether representations are significantly different, which has for
example been used to establish temporal dynamics (Myers et al., 2015;
Spaak et al., 2017). Furthermore, it can not only be tested whether
representations are overlapping at all, but also whether they are over-
lapping more than expected in a neural population with random selec-
tivity (Bernardi et al., 2020). Pattern generalization has also been
proposed to provide a general framework for the evaluation of
abstraction in neural circuits (Bernardi et al., 2020).

Despite this broad application, it is unclear under which conditions,
and to what extent, such interpretations of pattern generalization in
neural mass data are valid. Here, we address these questions. We first
simulate measurements of neural population activity to show how
consistencies of the underlying representations lead to spurious pattern
generalization in mass signals. We then introduce a measure of expected
pattern generalization under the assumption of identity, which can be
used to test against the null hypothesis of identical representations and
serves as a benchmark for empirical pattern generalization values. We
illustrate the interpretational caveats of pattern generalization for cur-
rent neuroscientific practice using simulated and real MEG data. Finally,
we provide practical recommendations for the interpretation of pattern
generalization results.

The interpretational pitfalls we identify in the present work affect
measures of pattern generalization based on both decoding methods
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Table 1
Glossary of core definitions.

Concept Definition

Class A set of trials defined by the value of a variable we want to
quantify neural information about. This can e.g. be done
using a classifier, by assessing the accuracy of predicted class
labels.

Any change in the experimental circumstances. In pattern
generalization analysis, we want to quantify whether the
representations underlying neural information are invariant
across contexts. Examples of context variables include time,
or any experimentally manipulated condition.

In decoding analyses, class labels are predicted from the
neural data. A common example are classifiers which predict
the class label of each trial.

In encoding analyses, aspects of neural data are predicted
from the class labels. For example, the cross-validated
Mabhalanobis distance quantifies the pattern separation
between trials of two classes.

Here, we consider two neural representations identical if the
vectors separating the two classes of each representation are
perfectly collinear.

Any measure indicating the degree of reliable separation of
neural activity patterns between classes. For our purposes,
neural information can be quantified both by decoding (e.g.
classifier accuracy) or encoding measures (e.g. Mahalanobis
distances).

Context

Decoding

Encoding

Identity

Neural information

Neural Here, the neural representation of a variable is the difference
representation in the neural activity pattern between values of that variable.
Thus, we define neural representations in their most general
sense.
Pattern The degree to which the neural activity pattern differences
generalization between two classes are shared across two contexts. In other

words, pattern generalization describes the similarity of two

neural representations. Pattern generalization can be

assessed using either encoding (e.g. cross-classification

between trials of two contexts) or decoding measures (e.g.

based on cross-validated Mahalanobis distances with training

and test data from different contexts).

The spatial scale at which a neural population measurement

encompassing the activity of many neurons is taken, using for

example MEG or fMRI.

Representational The spatial scale at which neural representations are

level implemented. Depending on the question at hand, this could

for example be at the scale of neurons, cortical columns, or
areas.

Population level

Stability The tendency of neural representations to be shared across
repetitions of the experiment. The neural representation of
stimulus hemifield, for example, would be strongly stable
across participants, recruiting the contralateral visual cortex.

Uniformity The tendency of neural activity pattern differences between

classes to have the same sign across neurons. For example,
high contrast stimuli may be expected to elicit higher activity
than low contrast stimuli in most neurons.

(such as cross-classification algorithms) and encoding methods (such as
the cross-validated Mahalanobis distance, or cross-validated MANOVA,
Allefeld and Haynes, 2014; Christophel et al., 2018; Diedrichsen et al.,
2016; Walther et al., 2016). For simplicity, in the following we do not
differentiate between decoding- and encoding-based measures of
representational strength and generalization unless necessary, and
subsume them under the general terms of neural information and pattern
generalization, respectively.

2. Results

Whether significant pattern generalization reliably indicates over-
lapping neural representations depends on the, often only partially
known, relationship between these representations and the experi-
mental measurement (Cichy et al., 2015; Cohen, 2017; Sandhaeger
etal., 2019), including the sampling of neurons and signal mixing: When
two representations are orthogonal in a neural population, the spatial
smoothing inherent in neural mass recordings introduces spurious sim-
ilarities between them (Fig. 1C). Consider a case where a single
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measurement sensor is used, reflecting average activity over the whole
brain. Any two variables that have an effect on the measured data will
either lead to an increase or decrease in activity, such that a pattern
generalization analysis would always find them either positively (if both
effects go in the same direction) or negatively (if they go in opposite
directions) related. This would be the case regardless of whether the
underlying neural representations recruit overlapping or fully orthog-
onal populations, or even distinct brain areas. With more measurement
sensors, and less severe mixing, this effect would be weaker, but none-
theless present. Importantly, all modalities of neural mass data,
including EEG, MEG, fMRI and even local field potentials, are affected
by signal mixing and thus susceptible to this effect.

Does the reduction of orthogonality due to signal mixing render
pattern generalization analyses on the population level invalid? Not
necessarily: pattern generalization is typically not assessed on a single
measurement or subject, but significance is determined statistically over
a number of different subjects (or any other type of biological replicate).
As long as the effects that mixing asserts on subjects are independent,
there is no issue. The spurious correlation between mixed patterns
would be positive in some subjects, and negative in others, resulting in
pattern generalization and reversals respectively. Across the population
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this would average out, such that no consistent effect would be
detectable.

However, it cannot generally be assumed that mixing affects each
subject independently. For example, in fMRI there is an ongoing debate
about the dominant sources of information in the BOLD signal (Carlson,
2014; Formisano and Kriegeskorte, 2012; Freeman et al., 2013, 2011;
Roth et al., 2022, 2018). While the functional selectivity of voxels may
be partially determined by a random sampling of the underlying
neuronal population, in many circumstances maps or biases on a larger
spatial scale may contribute to fMRI decoding. Similar, and arguably
stronger, considerations apply in EEG and MEG (Cichy et al., 2015). If
such maps exhibit a substantial similarity between individuals, and
thereby violate the independence of multivariate patterns, pattern
generalization caused by spatial mixing may become consistent over
seemingly independent subjects. Consequently, this yields the impres-
sion that representations are overlapping when they are in fact not.

2.1. Spurious pattern generalization due to consistent mixing effects over
replicates

To investigate how signal mixing in combination with a consistent

A
Population
measure: p, . i . ' @
Mixing: My,
/?e etitions: k
A-H N I . P
Neuronal representation r,
B N C
eurons Stability =0 Stability = 0
il 2 0.571 Uniformity = 0 Uniformity = 0.5
]
;b O pRES 2 I
5 o5 pfile pLEh S 0 .
0 gL 2 0.5] Stability =1 Stability = 0.5
= Uniformity = 0 Uniformity = 0.5
0 _...|||I. .llm ,,,,,,, |||||||I||
U f t -0.2 0 02 -0.2 0 0.2
niformity Decoding magnitude
Activity class 1-2 Information
- = ggﬂtgﬂé Pattern generalization
Min 0 Max == p<0.05
D
1
St 5/ SNR = SNR =4 SNR = Inf 1
£8 (M =0.25) (M=4) =2
5% £2
=D -
o® 2]
(01 (Y = N —— A — A 0
0

0 Uniformity

Fig. 2. Spurious pattern generalization due to consistent mixing. (A) Illustration of the simulation. Orthogonal representations were constructed, and spatial mixing was
applied to yield a population measure. (B) We evaluated spurious pattern generalization as a function of uniformity (i.e. the tendency of class-differences to have the
same sign) and stability (i.e. the tendency of representations to be similar across subjects). (C) Distribution of neural information and pattern generalization for four
example parameter combinations, at an SNR of 1. (D) Proportion of simulations with significant pattern generalization (p < 0.05) for different SNRs, uniformity and
stability. The three finite SNR conditions correspond to Mahalanobis distances (M) of 0.0156, 0.25 and 4.
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relation between measurement sensors and the underlying representa-
tions leads to spurious pattern generalization, we implemented a
simulation that allowed us to quantify the effect of several parameters
(Fig. 2A). For each of two contexts, we first assigned random weights
discriminating between two classes of trials to distinct subsets in a total
of 100 neurons. We used these weights to simulate responses in 1000
trials per context by multiplying them with a signal-to-noise ratio (SNR)
and adding Gaussian noise. We spatially mixed the responses of all
neurons into 10 population measures using Gaussian mixing functions
with a standard deviation of 25 neurons. In each simulation run, we
generated these population responses 20 times, in order to create a
dataset similar to those commonly used in neuroimaging. In a standard
neuroscientific experiment, these repetitions would correspond to par-
ticipants, while the population measure itself may constitute LFP, fMRI,
EEG or MEG data. Crucially, the two subsets of neurons corresponding to
each context were always non-overlapping, that is, no neuron showed
activity differentiating between the classes in both contexts. Thus, the
class representations in both contexts were orthogonal, such that any
pattern generalization would be spurious. We then applied a pattern
generalization analysis by computing the cross-validated Mahalanobis
distance between classes, using trials from one context as training-, and
from the other context as test data in a two-fold cross-validation scheme.
As a consequence of how the data were generated, each SNR condition
corresponded to a specific average Mahalanobis distance between clas-
ses. In each simulation run we determined whether consistent pattern
generalization was present across repetitions using standard t-statistics
and a significance threshold of p < 0.05. Finally, we repeated the
simulation 1000 times to estimate the false positive rate.

The properties of each multivariate pattern were defined by two
variables (Fig. 2B): first, its uniformity, i.e. the tendency of class dif-
ferences to have the same sign in each neuron. For a uniformity of 1,
selective neurons always showed stronger activation for class A than for
class B, while for a uniformity of 0, activation differences were sym-
metrically distributed around 0. Secondly, we defined the stability of the
multivariate patterns over repetitions (e.g., subjects). When stability
was 1, all repetitions shared the same multivariate patterns, whereas
with a stability of 0, patterns were fully independent between
repetitions.

When activation differences between the two classes in both contexts
were symmetrically distributed around O (uniformity = 0) and fully in-
dependent between repetitions (stability = 0), there was strong neural
information but little spurious pattern generalization (Fig. 2c, top left).
We next parametrically modified the uniformity and stability of the
simulated representations, and repeated the simulation with different
SNR values. When representations were independent across repetitions
(stability = 0) and non-uniform (uniformity =0), at an alpha level of
5%, 5% of simulations resulted in significant pattern generalization
which exactly matches the expected false positive rate (Fig. 2C and D).
However, increases in either uniformity or in stability led to an inflation
of the false positive rate. This inflation was quicker for higher SNRs. In
extreme cases of high uniformity or stability, the false positive rate
approached 100%, indicating that spurious pattern generalization
would be found in every single case.

These results highlight an underlying assumption of the common
practice of performing statistical tests of pattern generalization on the
group level: for the outcome of these tests to be valid, all participants’
pattern generalization values must be measured independently of each
other. This assumption is no longer fulfilled when the two representa-
tions to be compared are to some extent stable over repetitions, which
may lead to spurious pattern generalization that is consistent across
repetitions (e.g., subjects). Thus, the mere presence of significant pattern
generalization in neural mass signals is not a sufficient indicator of
overlapping representations at the underlying neural level.
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2.2. Testing the identity of representations

While the effect of mixing complicates inferences about the presence
of a representational overlap from pattern generalization in mass sig-
nals, pattern generalization analyses have also been used to test the
complementary null-hypothesis of identical representations. In this
context, two representations are considered identical when their
defining multivariate pattern difference vectors are perfectly collinear.
How does signal mixing affect such tests? If the pattern generalization
between two contexts is lower than a certain threshold, it is concluded
that the representations in both contexts are not identical. Importantly,
this inference is not impacted by the mixing inherent in neural mass
signals, which can only increase the similarity of representations. The
validity of tests against the identity of representations thus extends to
the underlying neural signals: if representations are found to be
different, there has to be an underlying difference on the neural level.
Such tests against the identity of representations have prominently been
used to assess the limits of temporal generalization. By training a
decoder at one time point, testing it at another, and finding that it does
not generalize perfectly, some degree of temporal dynamics of the un-
derlying representation can be established (Myers et al., 2015; Spaak
et al., 2017).

An appropriate reference value to test the identity of representations
using the pattern generalization between two contexts should consider
the neural information within each context: if the two representations to
be compared are both strong, we would expect stronger pattern gener-
alization than if one or both are only weakly detectible. For cross-
decoding analyses, a commonly used reference value is the minimum
of the decoding values in both contexts (Myers et al., 2015; Spaak et al.,
2017). More generally, any encoding- or decoding-measure of pattern
distinctness can be used to compute a minimum information value. This
works well when SNR - and consequentially the neural information - is
similar in both contexts. However, in situations of unequal SNR, the
minimum information value strongly under-estimates the true pattern
generalization between identical representations. Thus, in such situa-
tions, tests against the identity of representations would often fail,
leading to an elevated false negative rate (Fig. 3A).

It would therefore be desirable to test against a different reference
value. Using the neural information about both representations, we can
estimate a lower bound of the pattern generalization expected between
both representations if they were identical. Importantly, while identity
indicates that the vectors separating the two classes of each represen-
tation are perfectly collinear, their length may vary between represen-
tations. Thus, there may be different amounts of neural information
about both representations. The computation of this expected pattern
generalization under the assumption of identity is based on the geo-
metric mean of both information values (see Appendix A for a complete
derivation of the expected pattern generalization), and provides an ac-
curate estimate for unbiased, symmetric information measures based on
vector multiplication between training- and test data. This includes
distance measures such as the cross-validated Mahalanobis distance, or
the cross-validated MANOVA. Importantly, it is not valid for classifier
accuracy, which involves a nonlinearity impairing the interpretability of
cross-classification accuracies.

To validate this measure of expected pattern generalization under
identity, we again simulated data from two classes in two contexts, this
time enforcing the identity of representations between contexts. We then
used the neural information values of both contexts to predict pattern
generalization between them. We defined the bias of the predicted
pattern generalization as the normalized difference between estimated
and true pattern generalization. As theoretically expected, the estimate
of expected pattern generalization provided a lower bound for true
pattern generalization (Fig. 3B). For medium to high signal-to-noise
ratios (here defined as the average Mahalanobis distance between
classes), expected pattern generalization values were close to ground
truth, and, in very low SNR simulations, they under-estimated the true



F. Sandhaeger and M. Siegel

A Minimum B
estimate

Expected
estimate

1/256

-
_

SNR
Mahalanobis)

o
Relative pattern
generalization bias

[ -
1
N

1/256 1 256

SNR
(Cross-val. Mahalanobis-distance)

Fig. 3. Bias in the estimation of expected pattern generalization between contexts.
(A) Using the minimum information magnitude as an estimate leads to a sig-
nificant under-estimation when SNR is different in both contexts. (B) The novel
expected pattern generalization estimate under identity introduced here pro-
vides a tighter lower bound, with little underestimation for medium to high
SNRs. It works well when SNRs are different in both contexts. Bias is calculated
as (estimated-true)/true pattern generalization.

A B

(%) 2
o

False
positives (%

0 50 100 150

Distance between
representations in mm

(@)
w)

1 100 SNR
S . (Mahalanobis)
0E X =256
> —
2N g9 =1
S T2 =
@ -2
5 g
0 o= —

0 50 100 150 0O 50 100 15

Distance between representations in mm

Fig. 4. Spurious pattern generalization in simulated MEG data. (A) Non-
overlapping representations were placed in two out of 30 distinct brain areas.
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tance > Omm in B, C and D). Bottom, example of two representations in the
same area (corresponding to a distance of Omm in B, C and D), which are
nonetheless non-overlapping and therefore orthogonal. (B) Percentage of sta-
tistically significant pattern generalization results between orthogonal repre-
sentations for different signal-to-noise ratios (SNR, corresponding to the cross-
validated Mahalanobis distance between classes) and cortical distances. Rep-
resentations were simulated on the source level, projected to MEG sensors, and
pattern generalization analysis was applied. As representations are non-
overlapping, significant results indicate false positives. (C) Spurious pattern
generalization magnitudes in simulated MEG data relative to the expected
pattern generalization between identical simulations. When representations are
not placed in the same area, pattern generalization is very small. (D) Percentage
of statistically significant pattern generalization results between orthogonal
representations, which at the same time are not significantly smaller than ex-
pected, were they identical. Apart from low SNRs in simulations with repre-
sentations in the same area, this effectively controls the false positive rate. High
pattern generalization values can thus reliably indicate overlapping, or at least
spatially very close, representations.
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pattern generalization. The underlying cause of this bias is the vari-
ability of the estimated neural information; for a given number of trials
it scales monotonously with SNR. The extent of the bias in empirical data
therefore corresponds to simulations with comparable sample sizes and
Mahalanobis distances. Crucially, the measure proposed here offers a
tighter lower bound than the previously suggested minimum of both
neural information values (Fig. 3A vs. 3B). It can therefore be used for
more sensitive tests against the identity of representations.

Finding that empirical pattern generalization values are significantly
smaller than the expected pattern generalization under identity thus
leads to the valid inference that representations are not identical.
Notably though, the reverse test is not possible: within the framework of
null-hypothesis significance testing, we can never conclude that the
similarity between two representations is sufficiently close to the ex-
pected pattern generalization value to render them identical. Further-
more, being a lower bound, expected pattern generalization also does
not offer the possibility to quantify evidence for the null hypothesis in a
Bayesian framework.

2.3. Interpreting relative pattern generalization

So far, we have established that, first, the interpretation of the
presence of pattern generalization from neural mass signals is compli-
cated by mixing effects. Second, we have shown that the magnitude of
pattern generalization one would expect if two representations were
identical can be estimated, and that the deviation from identity can be
statistically tested without interpretational problems. This measure of
expected pattern generalization provides a crucial additional benefit by
enabling the assessment of relative pattern generalization magnitudes.
Raw pattern generalization magnitudes are difficult to interpret: the
same pattern generalization values may, for example, be due to either a
moderate representational overlap in a high SNR situation, or due to
identical representations in a low SNR situation. Putting pattern
generalization values in relation to the reference value of identical
representations helps resolve such ambiguities. Importantly, the relative
magnitude of pattern generalization values also constrains the possible
sources of pattern similarity. While weak pattern generalization may
often be spurious, strong pattern generalization approaching the
expectation under identity indicates that the underlying neural repre-
sentations are sufficiently similar to be indistinguishable by the mea-
surement method.

In fMRI, for example, weak spurious pattern generalization could be
found between two representations in distinct parts of an area, whereas
near-identical pattern generalization is only plausible if the neural
representations match at the voxel- or sub-voxel-level. Similarly, in
MEG, weak spurious pattern generalization may occur between repre-
sentations in distinct brain areas, as long as there is any measurement
cross-talk between them, whereas strong pattern generalization would
indicate matching patterns at the method’s maximal spatial resolution
on the order of millimeters or better (Cichy et al., 2015). In general,
spurious pattern generalization values would, while significant, be far
from those expected between identical representations. Therefore, the
relative strength of pattern generalization can aid interpretation: weak,
but significant pattern generalization is more likely to be spurious than
strong pattern generalization. Importantly, this can only serve as a
qualitative strategy. While the relative strength of pattern generalization
may directly map onto a researcher’s confidence in the result, there is
currently, to our knowledge, no method to quantify this.

2.4. Spurious pattern generalization between orthogonal representations
in simulated MEG data

To investigate if spurious pattern generalization could plausibly have
a detrimental effect in typical brain imaging studies and to assess the
usefulness of expected pattern generalization, we simulated neural re-
sponses in two classes of trials, in two different contexts. For each
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context, we defined a small set of neural sources to show increased ac- decreased for more distant representations, it was still higher than the
tivity in one of the two classes. Importantly, the class representations in expected false positive rate even at large distances (Fig. 4B). The severity
both contexts were orthogonal. In this simple example, we constrained of this effect increased with higher signal-to-noise ratios (SNR). As SNR
the representations to be uniform: every selective source in either was defined to correspond to the average cross-validated Mahalanobis
context always showed stronger activity for class A than for class B. We distance, the results of this simulation can provide a guideline for the
added independent Gaussian noise to each trial’s and source’s activity expected percentage of false positives in empirical data. For example,
and then used empirical forward models based on structural MRI scans two neural representations 50 mm apart with realistic neural informa-
of 19 human participants to project the simulated data to 272 MEG tion corresponding to Mahalanobis distances of 1 each (see Fig. 5) would
sensors. While noise was independent across participants, we used be expected to show significant spurious pattern generalization in 70%
identical neural representations for each participant. This simulation of experiments with 1000 trials and 19 participants.
thus corresponds to a situation where class differences are strongly We next used the measure of expected pattern generalization under
dependent on an underlying topography that is stable across participants the assumption of identity to assess the strength of spurious pattern
and driven by uniform activity differences between classes. A plausible generalization between orthogonal representations, in the extreme case
example may be the presentation of weak (class 1) and strong (class 2) of perfect stability and uniformity. To do so, we computed the expected
visual (context 1) and auditory (context 2) stimuli. pattern generalization values between representations in each pair of

Again, we applied a pattern generalization analysis to the simulated areas. We then computed the relative strength of spurious pattern
population data using cross-validated Mahalanobis distances and a two- generalization compared to this expectation under the assumption of
fold cross-validation scheme: for each simulation, we multiplied the identity. Spurious pattern generalization was markedly lower than ex-
vectors discriminating trial-classes in both contexts, which is compara- pected if representations were identical (Fig. 4C). Only for representa-
ble to training a decoder in one context and testing it in the other. To tions within one area and in high SNR conditions, spurious pattern
assess how the results depended on spatial distance between the repre- generalization reached relative values of about 0.7, whereas with
sentations in both contexts, we placed each representation in one of 30 increasing distance and very low SNR, relative pattern generalization
cortical areas covering the whole brain and repeated this analysis for values quickly dropped.
every pair of areas (Fig. 4A). Importantly, even when both representa- It thus appears to be highly unlikely for pattern generalization values
tions were placed in the same area, their respective sets of selective to be spurious, while at the same time not being significantly lower than
sources were non-overlapping. Thus, any pattern generalization found the expected pattern generalization. To quantify this, we determined the
would be spurious. proportion of simulations in which pattern generalization between

For spatially close representations, we found significant pattern orthogonal representations was significantly different from 0, but not
generalization in a large fraction of simulations. While this percentage significantly different from its expected value under identity (Fig. 4D).
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Fig. 5. Pattern generalization of contrast in example MEG data. (A) Behavioral task. Participants viewed dynamics random dot patterns with varying levels of contrast,
in either the left or right hemifield, and reported the direction of motion. (B) We analyzed data from two contrast levels. (C) Pattern generalization (red) of the
contrast of stimuli presented in the left (purple) and right (blue; note that the blue line is mostly obstructed by the nearly identical purple line) hemifields, as well as
the expected pattern generalization if left- and right-hemifield representations were identical (green). Horizontal bars indicate significant clusters of information
(blue and purple, P < 0.05, cluster permutation, one-tailed, N =19), pattern generalization (red, two-tailed), or significantly smaller pattern generalization than
expected (green, one-tailed). Coloured lines and shaded regions indicate the mean +/- SEM across participants. (D) Relative pattern generalization of contrast,
calculated as empirical pattern generalization divided by expected pattern generalization under identity. (E) Mean cross-temporal generalization of contrast in-
formation. Dashed outlines indicate significant clusters of information (P < 0.05, one-tailed, cluster permutation, N=19. (F) Mean expected cross-temporal
generalization under the assumption of a perfectly stable representation. Dashed outlines indicate significant clusters of expected generalization > 0 (P < 0.05,
cluster permutation, two-tailed, N=19. (G) Difference between real (panel F) and expected (panel G) cross-temporal generalization, indicating a dynamic repre-
sentation of contrast. Dashed outlines indicate significant clusters where the empirical generalization is smaller than the expected generalization (P < 0.05, cluster
permutation based on paired t-statistics, one-tailed, N=19). (H) Relative cross-temporal generalization, as in panel D.
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Indeed, when applying this additional criterion, the fraction of false
positives markedly decreased. For higher SNRs, as well as for any but the
smallest spatial distances between representations, this reduced the
number of false positives to the expected rate or below. This suggests
that at least high pattern generalization corresponding to identical or
close to identical patterns can serve as a reliable indicator of overlapping
or spatially very close representations at the underlying neuronal level.

2.5. Example application: contrast and coherence information in MEG

To illustrate the considerate application of pattern generalization
analyses to neural activity, we analyzed an MEG dataset recorded during
the performance of a motion-direction discrimination task (Pellegrini
et al., 2020) (Fig. 5A and B). Briefly, participants viewed dynamic
random dot patterns presented either in the left or the right visual
hemifield. Stimuli were either upwards- or downwards-moving and
differed in their luminance contrast. We used the cross-validated
Mahalanobis distance to compute neural information about stimulus
contrast. Importantly, we also applied several pattern generalization
analyses. First, we computed the pattern generalization between the
contrast of stimuli presented in the left and right visual hemifields.
Secondly, we applied a cross-temporal generalization analysis, using all
pairs of time points within the trial to compute the generalization of
contrast representations. In all cases, we used standard t-statistics and
cluster permutation tests to assess statistical significance.

Upon stimulus presentation, there was significant contrast informa-
tion (Fig. 5C, blue and violet traces, P < 0.05, one-tailed), both when
stimuli were presented in the left and in the right hemifield. We found
significant positive pattern generalization between the contrast of
stimuli presented in the left and right hemifields (Fig. 5C, red trace, P <
0.05, two-tailed). Furthermore, there was a significant cross-temporal
generalization of contrast information between a wide range of time
points (Fig. 5E, P < 0.05, two-tailed).

Did these significant pattern generalization results reflect a true
overlap of the underlying neural populations representing contrast in
both hemifields and at different time points? To aid our interpretation,
we first computed the expected pattern generalization under the
assumption of identical representations (Fig. 5D, green trace).

Pattern generalization of contrast between stimuli shown in the left
and right hemifields was significantly smaller than expected for iden-
tical representations throughout the trial (Fig. 5C, green bar above
traces, P < 0.05, paired, one-tailed). Notably, pattern generalization and
expected pattern generalization followed different time-courses. This
can most easily be seen in the ratio between both values (Fig. 5D). While
pattern generalization was initially low, it reached a relatively high level
close to the expected value later in the trial. This suggests that, while
early contrast information was likely driven by spatially selective cir-
cuits, it was later supported by populations that at least partially
generalized across hemifields. Crucially, the significant but low-
magnitude pattern generalization early in the trial should not be taken
as conclusive evidence of overlapping populations representing contrast
in both hemifields. Finally, the cross-time analysis indicated that
contrast representations were significantly dynamic after stimulus
onset, but largely stable during the sustained presentation of the stim-
ulus (Fig. 5E-H).

Taken together, these empirical results provide both examples of
pattern generalization that may well be spurious (initial response), and
of pattern generalization values that are sufficiently high to warrant the
careful conclusion of overlapping underlying representations (late sus-
tained response).

3. Discussion
Multivariate decoding and encoding methods have become standard

tools in neuroscience. As is true for any method, the promise they afford
comes at the cost of hidden assumptions and interpretational pitfalls
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when not applied carefully. Several such issues have been described, and
need to be taken into account when using or interpreting these analyses
(Carlson et al., 2018; Driel et al., 2021; Hebart and Baker, 2018; Quax
et al., 2019). Here, we shed light on the properties of pattern general-
ization, especially when applied to neural mass signals. Importantly, our
results question the naive interpretation of significant pattern general-
ization results as direct evidence of overlapping neural representations.

3.1. Spurious pattern generalization in multiple measurement modalities

While we focused on the case of large-scale non-invasive electro-
physiological data gained from EEG or MEG, the issues that we pre-
sented apply beyond these methods. Although the specific limits of
interpretability are determined by signal properties such as the spatial
scale, any neural mass data involving at least some degree of signal
mixing will face similar issues. Most notably, this includes fMRI data, as
well as invasive population electrophysiology such as using local field
potentials or electrocorticography.

These problems of pattern generalization interpretability are closely
related to the spatial resolution of a measurement method. However,
while for many other applications, the most relevant index of spatial
resolution is localization accuracy, what matters in the case of pattern
generalization is the cross-talk between neural sources. In the case of
EEG or MEG, the cross-talk function between two sources may not even
reach zero at the largest spatial distances, thus resulting in the possi-
bility of spurious pattern generalization between representations in far-
apart brain areas when SNR is sufficiently high.

3.2. The effect of high-pass filtering on temporal generalization

It has been noted that the use of high-pass filters on time series data
can lead to spurious decoding (Driel et al., 2021). This can cause an
additional complication: due to the sign reversals in the impulse
response functions of commonly applied filters (e.g. Butterworth),
spurious temporal generalization may seemingly reveal pattern re-
versals. This effect may be largely responsible for the widespread phe-
nomenon of below-chance cross-time generalization (King and Dehaene,
2014; Vidaurre et al., 2021; Weisz et al., 2020). The interpretation of
such below-chance temporal generalization results should thus be
handled with extreme care, and always complemented by a discussion of
potential filtering confounds.

3.3. Choosing a pattern generalization algorithm

For most of this manuscript, we have used the term pattern general-
ization to group together a large number of methods based on both linear
classification algorithms as well as on cross-validated distance measures
such as the cross-validated Mahalanobis distance (Diedrichsen et al.,
2016; Walther et al., 2016) or cross-validated MANOVA (Allefeld and
Haynes, 2014; Christophel et al., 2018). While these methods differ in
some of their properties, they all share the fundamental issue of spuri-
ously similar representations due to signal mixing.

Nonetheless, potential mitigation strategies and consequently the
interpretability of pattern generalization results depend on the specific
method used. First, classification accuracy suffers from nonlinearities
and ceiling effects. The relationship to an underlying effect size is
therefore not straightforward. This, secondly, also results in potential
asymmetries of cross-classification. While such asymmetries have been
interpreted as pointing towards meaningful physiological phenomena,
they simply reflect differences in signal to noise ratio (van den Hurk and
Op de Beeck, 2019). When assessing the similarity of representations
between contexts, this constitutes a confound making it more difficult to
interpret the magnitude of cross-classification values. Taken together,
these points hinder the estimation of the expected cross-classification
between identical representations.

Here, we therefore chose to use the cross-validated Mahalanobis
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distance; a distance measure that accurately reflects the separation be-
tween classes in an unbounded way, which enables the interpretability
of pattern generalization values. The same also holds for other distance
measures that are symmetric and unbiased, such as Euclidean distances
or the cross-validated MANOVA (Allefeld and Haynes, 2014).

3.4. Can expected pattern generalization be estimated on population
averages?

Throughout this article, we computed the expected pattern gener-
alization under the assumption of identical representations on the level
of single experimental repetitions or participants. This is because the
expected pattern generalization should be estimated at the same level at
which the multivariate pattern analysis itself is performed: if, for
example, decoding is performed in individual subjects before then
submitting the single subject results to a population level statistical test,
the same procedure should usually be followed for the expected pattern
generalization. The reason for this is that the non-linear computation of
the expected pattern generalization and the linear averaging of single
subject decoding values do not commute. When computing the expected
pattern generalization between two representations based on
population-averaged neural information, any across-subject variability
in the ratio between the neural information about both representations
would thus result in an over-estimation. Consequentially, any statistical
test against the null hypothesis of identical representations would be
prone to false positives.

3.5. Removing uniform responses

Here, we describe the uniformity of multivariate pattern differences
as a factor contributing to spurious pattern generalization. This unifor-
mity is closely related to similar concepts such as univariate responses,
or overall activation differences between classes. The interpretation and
handling of such uniform responses has been a matter of debate in the
context of decoding analyses, and it can be helpful to distinguish
decodability arising from response differences shared across a popula-
tion from those arising from more fine-grained patterns (Hebart and
Baker, 2018).

A strategy to both identify and exclude effects based on overall re-
sponses is the subtraction of an estimate of the shared pattern before the
application of multivariate pattern analysis. In principle, the subtraction
of shared response patterns could suppress uniformity as defined here. If
successful, this would potentially mitigate the spurious pattern gener-
alization caused by uniformity. This would however also entail a loss of
sensitivity: due to population mixing, even fine-grained neuronal
response patterns can appear uniform across sensors, and would thus be
removed.

More importantly, methods to remove shared response patterns rest
on strong assumptions, such as the absence of any additional, class-
independent neural responses (Hebart and Baker, 2018). As these as-
sumptions are difficult to verify, and are likely rarely met, the removal of
shared response patterns may not only suppress, but also introduce
spurious pattern generalization. Thus, while it may be interesting to
assess the effect of shared pattern removal in a given dataset, it cannot
be seen as a foolproof tool to mitigate spurious pattern generalization
caused by uniformity. Nonetheless, future work in this direction may be
fruitful to increase the interpretability of pattern generalization results.

3.6. Recommendations

Assessing the similarity of neural representations using pattern
generalization remains an important analysis method. Even when using
population measurement techniques that are not optimal for drawing
conclusions at the neural level, pattern generalization analyses can
facilitate meaningful scientific insights when the described problems are
taken into account. To aid researchers in the application of pattern
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generalization analyses, we provide a list of recommendations. When
followed, these should enable reliable inferences about the generaliza-
tion of neural representations from neural mass data:

(1) Merely significant pattern generalization of population signals
should not be interpreted as strong evidence of overlapping
neural representations.

(2) Pattern generalization analyses should always be accompanied
by an analysis of the neural information within each context to
provide a reference for the strength of generalization that can be
expected. If an unbiased distance measure is used, such as the
cross-validated Mahalanobis distance, this expectation can be
formalized as the expected pattern generalization under the
assumption of identical representations. The relative strength of
pattern generalization, compared to this expectation, constrains
possible explanations: values close to the expectation indicate
that both representations are indistinguishable given the prop-
erties of the data, and therefore either overlapping or spatially so
close that their activation elicits identical measurement patterns.

(3) Pattern generalization can be tested against the null hypothesis of
perfect stability. Interpretations are valid even for the underlying
neural level. Thus, neural mass data can reliably be used to infer
that representations are not identical, or dynamic in time.

(4) Reasonable assumptions about the spatial scale, stability and
directional bias of the underlying representations can increase
the interpretability of pattern generalization results. If there are
good reasons to assume that circuit level representations are in-
dependent across replicates, even small pattern generalization
values provide evidence for a representational overlap.

(5) Even in situations when pattern generalization itself cannot be
meaningfully interpreted, it may be possible to make inferences
based on condition differences in pattern generalization. This
strategy would be valid when none of the confounding factors
underlying spurious pattern generalization is expected to vary
across conditions, such that true differences in generalization
likely underlie the observed effects.

In sum, we show that, contrary to common practice, the mere pres-
ence of statistically significant pattern generalization in data measured
on the population level does not allow strong inferences about the
orthogonality of the underlying circuit-level representations. We argue
that, with appropriate precautions, the pattern generalization frame-
work can nonetheless be used to gain valuable insights into the neural
mechanisms shared between contexts.
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Appendix A
A measure of expected pattern generalization
Let d1 be the true, noise-normalized pattern difference between two classes A and B, and d2 be the pattern difference in a different context. Then
the true Mahalanobis distances between the classes are:
M1 = d1*d1"
M2 = d2%d2"
The pattern generalization between contexts 1 and 2 is then given by
M12 = d1*d2"

Depending on the angle between d1 and d2, this true pattern generalization may be either positive or negative, indicating a pattern reversal. Under
the null hypothesis of perfectly identical patterns in the two contexts, the pattern differences between classes A and B are invariant up to a scaling
factor:

d2 = c*dl

Thus, the expected pattern generalization under stability can be calculated as

M12s = dI*(c*d]) =M1 = V&MI? = vV M1***d1*d1”
= VM1%d2*d2" = VM1*M2

When using real data, we do not have access to the true pattern differences and have to use cross-validation to avoid finding spurious information
and determine the empirical cross-validated Mahalanobis distances M1g, M2g and M12g. However, the cross-validated Mahalanobis distance provides
an unbiased estimator, such that E[M1g] = M1, E[M2g] = M2, and E[M12g] = M12. Empirical Mahalanobis distances can, when there is little signal,
become negative. If this happens for either M1 or M2, the expected pattern generalization would become complex-valued. Avoiding this by limiting
the values of M1 and M2 to the positive range would introduce a positive bias: even in the case of low SNR, when M1 and M2 are expected to scatter
around O, the expected pattern generalization would always be positive. Thus, even when both representations are identical, empirical pattern
generalization would often be significantly smaller than the expected pattern generalization. To avoid this positive bias, we multiply with the product
of the signs of M1 and M2. Thus, we define the empirical expected pattern generalization under the assumption of identity as

M12ge = /|M1*M2g|*sign(M1g)*sign(M2y)

This measure provides a lower bound for the true expected pattern generalization: For an infinite signal to noise ratio, M1g and M2 are always
positive. We can thus simplify the expression and use the Cauchy-Schwarz inequality to show that

E[M125 E[VMIg*M2g) < \/E[M1g]*E[M2;]

= VMIFM2 = M12

With lower signal to noise ratio, and partially negative distributions of M1 and M2g, the square root in the first part of the expression becomes
positively biased. This is counteracted by the second part. In the extreme, with M1g or M2 symmetrically distributed around zero, M12gg will also be
symmetrically distributed around zero.

As M12g is a lower bound of the true expected pattern generalization under identity, we can use it to test against the null hypothesis of identical
representations: if the empirical pattern generalization M12 is smaller than M12gg, the pattern differences in the two contexts are not identical.

Notably, the expected pattern generalization under identity defined here is closely related to an SNR-corrected correlation between the pattern
differences d1 and d2 (Siems et al., 2016).

MEG analysis and source simulation

We used data from a previously published study (Pellegrini et al., 2020) to provide an example cross-decoding analysis. 19 Participants performed
a motion discrimination task while MEG was recorded using a 275-channel system (Omega 2000, CTF Systems Inc.). Participants provided written
informed consent prior to the start of the experiment. The study was conducted in accordance with the Declaration of Helsinki and was approved by
the ethical committee of the Medical Faculty and University Hospital of the University of Tiibingen. Detailed procedures are reported elsewhere
(Pellegrini et al., 2020). Briefly, on each trial, after a 500ms fixation baseline, participants viewed a dynamic random-dot pattern presented for
1000ms either in the left or right hemifield (10 ° eccentricity, 12 ° stimulus diameter). After a variable delay (300-600ms), a brief dimming of the
fixation cross served as a go cue in response to which participants had to indicate whether they saw upward or downward motion using a button press.

All stimuli were either upward- or downward-moving and had varying motion coherence (12%, 56% and 100%) and luminance contrast (20%,
60% and 100%).

For the present analysis, we omitted the intermediate levels of both coherence and contrast, keeping only those trials were both features were
either at the lowest or the highest level. We used the data of all 18 out of the 19 participants who either finished the total 900 trials, or at least as many
as required to counterbalance all conditions in the pattern generalization analysis. MEG data was high-pass filtered at 0.01 Hz, low-pass filtered at 20
Hz and resampled to 50 Hz.
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We then used cross-validated Mahalanobis distances to quantify the amount of information present in the data about stimulus contrast. After
baseline-correcting each trial and estimating a common noise covariance matrix across all conditions for each time-point, we computed cross-
validated Mahalanobis distances using 5-fold cross-validation after making sure trials of all combinations of contrast, coherence, hemifield and
motion direction were present equally often. All analyses were performed separately for stimuli presented in the left and right hemifields, and
subsequently averaged or contrasted.

In addition to these neural information analyses, we also employed pattern generalization analyses. We assessed generalization, first, across space,
using the contrast of stimuli presented on one side on the training data, and the contrast of stimuli presented on the other side on the test data.
Secondly, we assessed temporal generalization, using one time point as training data another time point as testing data.

For all pattern generalization analyses, we computed the measure of expected pattern generalization for identical representations described above.
Using cluster-based permutation tests, we then assessed two hypotheses: first, whether pattern generalization was significantly different from 0, and
secondly, whether pattern generalization was significantly smaller than expected for identical representations.

Each participant also took part in a structural MRI measurement. We used T1 images to construct individual forward models projecting from a set
of 457 sources uniformly distributed over the cortical surface to 272 MEG sensors. These forward models were then used to project simulated source
level data to the sensor level.

Software

All analyses were performed in MATLAB, using custom code as well as the Fieldtrip (Oostenveld et al., 2011) and SPM toolboxes.
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