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AbstractPleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
Humans can make abstract choices independent of motor actions. However, in laboratory

tasks, choices are typically reported with an associated action. Consequentially, knowledge

about the neural representation of abstract choices is sparse, and choices are often thought

to evolve as motor intentions. Here, we show that in the human brain, perceptual choices

are represented in an abstract, motor-independent manner, even when they are directly

linked to an action. We measured MEG signals while participants made choices with known

or unknown motor response mapping. Using multivariate decoding, we quantified stimulus,

perceptual choice, and motor response information with distinct cortical distributions. Choice

representations were invariant to whether the response mapping was known during stimulus

presentation, and they occupied a distinct representational space from motor signals. As

expected from an internal decision variable, they were informed by the stimuli, and their

strength predicted decision confidence and accuracy. Our results demonstrate abstract

neural choice signals that generalize to action-linked decisions, suggesting a general role of

an abstract choice stage in human decision-making.

Introduction

Sensory decisions are often linked to an appropriate motor action. This has led to a framework

of choices emerging as action intentions [1], supported by numerous studies showing action-

specific choice signals in motor and premotor areas of the brain [2–5]. Compelling evidence

favors such an intentional framework over the historic idea of decision-making as a sequential

process involving several, successive modules. However, a key component of intelligent behav-

ior is the ability to also make abstract choices when a suitable action is not known in advance

[6–8]. Any comprehensive account of human decision-making thus has to account for the pos-

sibility of abstract choices.

Since most studies use a fixed mapping of perceptual choices (in the following referred to as

“choices”) to motor responses, the role of abstraction in sensorimotor decision-making

remains elusive. A few notable exceptions, using behavioral tasks with a variable mapping of
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choices to motor responses, have identified neural representations of abstract choices [7,9–17].

However, empirical results comparing choice signals in action-linked and action-independent

situations are sparse. While some recent work found perceptual choice representations to

depend on the ability to plan motor actions [5,13] or response modality [18,19], other previous

evidence suggests at least partially overlapping representations of perceptual choices with spec-

ified or unspecified motor actions [9].

It is therefore unclear whether, and under which conditions, the same neural representa-

tions underlying abstract choice in an action-independent context are also present during

choices that are linked to actions. If this were not the case, it would suggest that abstract pro-

cessing is readily bypassed or attenuated when the choice context does not require it. Further-

more, the spatiotemporal dynamics of abstract choice signals are unknown, and it remains

unclear whether abstract choice signals constitute an internal decision variable that tracks

accumulated evidence. Consequentially, the demonstration of a context-independent, abstract

decision variable would be important to confirm predictions of abstraction as an essential

stage in perceptual decision-making.

To address this, we investigated human brain activity underlying flexible sensorimotor

choices using magnetoencephalography (MEG). The task design and a multivariate analysis

framework allowed us to pinpoint abstract neural choice signals in an action-linked as well as

in an action-independent context. MEG activity was predictive of participants’ perceptual

choices independently of both sensory input and motor behavior. Crucially, a novel metric for

the assessment of cross-decoding results enabled us to conclude that abstract choice represen-

tations were not only present in both contexts, but indistinguishable between them. Further-

more, choice signals dynamically evolved along the sensorimotor hierarchy and predicted

both decision confidence and accuracy, thus exhibiting a hallmark property of an internal

decision variable. Our results cast doubt on a purely action-based framework and suggest a

general role for abstraction in sensorimotor decision-making.

Results

Behavior in a flexible sensorimotor decision-making task

We recorded MEG in 33 human participants, while they performed a sensorimotor decision-

making task (Fig 1A, see Methods for subsets of participants used for some analyses). There

were 2 slightly different variants of the task, used for different subsets of participants (see

Methods). In each trial, we presented one of 2 dynamic random dot stimuli, which either con-

tained coherent downwards motion or not (referred to as “signal” and “noise” trials, respec-

tively), and participants judged the presence of coherent motion. To separate stimulus-related

neural signals from choice-related signals, we adapted the coherence level in the signal stimu-

lus for each participant such that they performed near threshold. The presence of both correct

and error trials then allowed us to identify neural signals associated with the perceptual choice,

independent of the physical stimulus, i.e., neural signals that separated correct signal and

incorrect noise trials from incorrect signal and correct noise trials. To disentangle choice- and

motor response–related signals, we introduced a flexible mapping between perceptual choices

and left- or right-hand button presses that was cued on a trial-by-trial basis. For half of the tri-

als, the choice–response mapping was revealed before stimulus onset (“pre-condition”), such

that emerging choices could immediately be linked to the appropriate motor response. For the

other half (“post-condition”), we revealed the mapping after stimulus offset, such that partici-

pants had to make abstract choices initially, before later selecting their motor response. Partici-

pants reported their choices with one of 2 buttons per choice (inner and outer buttons),

thereby additionally indicating their confidence. Participants performed equally well on “pre”
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and “post” trials (74% and 73% correct), neither their sensitivity (d0 = 1.35 and 1.28; t25 = 1.27,

P = 0.21, two-tailed t test) nor criterion (C0 = −0.01 and 0.05; t25 = −1.49, P = 0.15) were differ-

ent between tasks, and neither choice was preferentially associated with a particular motor

response (50% “right” responses for both “yes” and “no” choices, t25 = 0.58, P = 0.57 and t25 =

−0.09, P = 0.93, two-tailed t test). Furthermore, participants’ performance was not significantly

different between coherent and incoherent stimuli (72% and 75% correct responses for coher-

ent and incoherent stimuli, respectively, t25 = −1.41, P = 0.17, two-tailed t test). In both task

conditions, responses had to be withheld until the fixation point disappeared, and while reac-

tion times (0.74 +/− 0.23 s, mean +/− standard deviation over participants) were higher in the

post- than the pre-condition (Fig 1B, 0.75 s versus 0.72 s, F(1,415) = 7.77, P = 0.0056), in noise

than in signal trials (F = 9.7, P = 0.002), and in incorrect than in correct trials (F = 34.41,

P< 10−8), they were not significantly different between choices (F = 0.81, P = 0.37) or

responses (F = 0.17, P = 0.68) (six-way ANOVA including the factors of participant, task con-

dition, stimulus, choice, response, and accuracy).

Fig 1. Flexible sensorimotor decision-making task and reaction times. (A) In each trial, participants viewed one of 2

random dot stimuli either containing coherent downwards motion (“signal” trials) or containing only random motion

(“noise” trials) and reported the presence of coherent motion (“yes” or “no”) with a right- or left-hand button press.

Mapping between choice and response was instructed by an informative cue either before (pre-condition, cue 1) or

after the stimulus (post-condition, cue 2). Additionally, there was an irrelevant cue offering no additional information

either after (pre-condition, cue 2) or before (post-condition, cue 1). Participants additionally used the same button

press to indicate their decision confidence, using an inner or an outer button. (B) Difference between relative reaction

times depending on task, choice, stimulus, response, and accuracy. For each comparison, all other variables were

accounted for, and the difference in reaction times was computed after normalizing by the average of both options.

Darker and brighter dots indicate participants performing task versions A and B, respectively. Horizontal and vertical

bars indicate mean +/− SEM across participants. The data underlying this and all other figures is available at https://

osf.io/ucgk4/.

https://doi.org/10.1371/journal.pbio.3002324.g001
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Decoding neural representations of stimulus, response, and choice–

response mapping

For each task condition separately, we quantified neural information about the stimulus,

response, choice–response mapping, and choice using a multivariate analysis approach (cross-

validated MANOVA [20,21]; S1 Fig). This method is a generalization of the commonly used

cross-validated Mahalanobis distance. cvMANOVA builds on a multivariate general linear

model to assess the cross-validated variability contained in the data that is related to a specific

variable of interest. While conceptually similar to decoding algorithms, cvMANOVA offers a

number of advantages. First, it allows for the simultaneous extraction of information about

multiple variables without repeatedly training decoders on each variable separately. Second,

this enables the quantification of information related to one variable, while excluding con-

founds related to any other variable. Third, the resulting measure of the separability of the

multivariate activity patterns associated with the variables of interest is continuous, offering a

better interpretability and higher sensitivity compared to classifier accuracy. In addition,

cross-validation ensures the unbiased estimation of information by using nonoverlapping test

and training data sets. Thus, importantly, this analysis isolated neural information about each

individual variable, independently of the others. Choice information, for example, was the

information contained in the neural data about a participant’s perceptual choice independent

of all other variables.

We found significant neural information about all task variables in both conditions

(P< 0.01, cluster permutation statistics, Fig 2). Stimulus information (i.e., the neural pattern

distinctness between “signal” and “noise” trials) rose after stimulus onset and remained par-

tially present after stimulus offset. Response information (i.e., right- versus left-hand button

presses) built up after stimulus offset; it did so earlier in the pre-condition where the choice–

response mapping was already known during stimulus presentation. Motor responses could

be predicted more easily, and earlier in the trial, from motor-cortical beta lateralization (S2

Fig; [22]). Choice–response mapping information (i.e., yes/left and no/right versus yes/right

and no/left trials) peaked upon presentation of the relevant cue, after the pre-cue in the pre-

condition and after the post-cue in the post-condition. Notably, mapping information could

in principle be driven by both the visual features of the cue itself and a neural representation of

the mapping rule.

Abstract choice representations generalize between task contexts

Crucially, we also found information about the perceptual choice (i.e., yes versus no choices,

Fig 2, bottom, P< 0.0001 in both “pre” and “post” conditions, cluster permutation). Even

though participants’ choices were related to the presented stimuli and behavioral responses,

our analysis framework ensured that choice information could not be explained by neural vari-

ability due to either stimuli or responses. Thus, choice information was stimulus and response

independent. In both conditions, choices could be predicted before stimulus onset (pre:

P = 0.003, post: P = 0.045; one-tailed t tests on time-averaged choice information up to 1.25 s),

indicating that they were partly based on purely internal priors.

While, in the “post”-condition, the required motor action was not specified until after the

stimulus, choices could be immediately mapped to the appropriate response in the “pre”-con-

dition. Nevertheless, choice information was present in both conditions with a similar magni-

tude and time course (P> 0.05 for all time points before the end of the stimulus, two-tailed t
test), rising during stimulus presentation and remaining present until the end of the trial.

Choice information could not be explained by eye movements (S3 Fig). Thus, choices were
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represented abstractly in the human brain, regardless of whether they could be directly linked

to an action or not.

We employed a cross-decoding approach to assess the extent to which these choice repre-

sentations were similar between both task conditions. We trained a decoding model on one

task condition and tested it on the other. As the information estimated using cvMANOVA is

symmetric with respect to the test and training data used, we averaged results from both direc-

tions for all cross-decoding analyses. If the multivariate neural patterns distinguishing choices

were identical in the “pre”- and “post”-conditions, we would expect the magnitude of the

resulting cross-information to be comparable to the information found within the individual

conditions. If, on the other hand, choices were represented in orthogonal neural subspaces in

both conditions, cross-information should be much lower or negligible.

Fig 2. Neural information about the stimulus, response, mapping, and choice. Darker lines indicate information

during the pre-condition, brighter lines during the post-condition. Gray lines show the cross-decoding (“X-dec.”)

between both conditions, dashed gray lines the cross-decoding expected if representations in both contexts were

identical. Horizontal lines denote temporal clusters of significant information (colored lines, P< 0.01, cluster

permutation, one-tailed, N = 26), cross-information (gray, two-tailed) or significantly less cross-information than

expected (dashed gray, one-tailed). Coloured lines and shaded regions indicate the mean +/− SEM of information

across participants.

https://doi.org/10.1371/journal.pbio.3002324.g002
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Cross-decoding of choices was positive throughout the trial (Fig 2, bottom, gray line,

P< 0.0001, cluster permutation). Furthermore, the magnitude of cross-information was simi-

lar to the magnitude of choice information in the “pre”- and “post”-conditions. To quantify

this, we derived an estimate of the expected cross-information under the assumption of identi-

cal representations in both conditions, i.e., representations relying on the same multivariate

pattern and differing only in signal-to-noise ratio between conditions (see Methods). We

found that cross-decoded choice information was never significantly lower than expected if

representations were identical (P> 0.05 for all time points). Thus, abstract choice representa-

tions were not only present but were also shared between an action-linked and an action-inde-

pendent choice context.

All these results were highly similar between both variants of the task, indicating that the

slight differences between variants were not relevant for these results (S7 Fig).

Choice representations dynamically shift from sensory to motor areas

We further investigated the properties of neural stimulus, choice, and response representations

by pooling data from both task conditions. This choice was justified by our finding of shared

choice representations and maximized the signal-to-noise ratio for the following analyses. We

repeated the decoding analysis in a searchlight fashion across cortex to extract the spatiotem-

poral evolution of neural information about each variable (Fig 3). During stimulus presenta-

tion, stimulus information was strongest in occipital visual cortex, in line with early visual

representations of the sensory input. After stimulus offset, information remained at a lower

level, uniformly across the brain (Fig 3A, top). Response information increased earliest and

most strongly in motor areas (Fig 3A, middle), consistent with preparatory activity related to

the upcoming motor response.

The expected cortical distribution and temporal evolution of choice information is less

clear. Choices may be represented in visual areas, consistent with findings of choice probabili-

ties in sensory neurons reflecting either the effect of sensory noise on decision formation or

high-level feedback onto sensory populations [23–25]. Choice-specific signals may also be

present in motor and premotor areas, supporting the planning of potential motor responses

[9,18,25,26] or in associative areas specialized for decision formation.

We found that the distribution of choice information changed dynamically over the course

of the trial, rising first in occipital areas, before spreading throughout the brain. After the go

cue, choice information remained strongest in parietal cortex and central motor areas (Fig 3A,

bottom). Given the apparent shift of choice information from occipital areas during stimulus

presentation to central areas during the response phase, we quantified the similarity the corti-

cal distribution of choice information exhibited with those of stimulus and response informa-

tion. We found a significant correlation between the cortical distributions of choice and

stimulus information during stimulus presentation, and between choice and response infor-

mation during the response phase (Fig 3B, stimulus: P = 0.0064, response: P = 0.0227, cluster

permutation). We found similar results when repeating the searchlight analysis independently

for pre- and post-condition trials and extracting correlation values for the early stimulus-

related and the later response-related cluster. Despite the reduced number of trials, 2 out of 4

correlation values were significant, and all 4 had the same directionality as in the pooled data

(stimulus versus choice in pre: t25 = 4.24, P = 0.0001, response versus choice in post: t25 = 2.81,

P = 0.0047, stimulus versus choice in post: t25 = 0.98, P = 0.1683, response versus choice in pre:

t25 = 1.64, P = 0.0569, all one-tailed t tests).
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Temporal stability of neural representations

The spatial overlap between choice, stimulus, and response information raised the question

whether there were shared representations between stimulus and choice during evidence accu-

mulation and between choice and response during motor execution, respectively. We used

cross-temporal and cross-variable decoding to test this and evaluated both the temporal

dynamics of representations and the relationships between stimulus, choice, and response rep-

resentations (Fig 4A).

First, we focused on the temporal dynamics of representations. By using data from one

time point for training, and from another time point for testing, cross-temporal decoding

can reveal time periods of relative stability [27]. Furthermore, it is possible to compute the

expected cross-temporal decoding under the assumption that the underlying representation

Fig 3. Spatiotemporal dynamics of neural information. (A) Time-resolved stimulus (top), response (middle), and

choice (bottom) information in 4 groups of sources (in descending order of brightness: occipital, temporal, central,

and frontal). Data from both hemispheres were averaged. The cortical distribution of information during different

time intervals is shown underneath the time-courses. (B) Correlation of the cortical distribution of choice information

with the distribution of peak stimulus information (red) and peak response information (yellow). Horizontal lines

denote temporal clusters of significant information (A, P< 0.05, cluster permutation, one-tailed, N = 26) or

correlation (B, P< 0.05, cluster permutation, one-tailed, N = 26). Colored lines and shaded regions indicate the mean

+/− SEM of information or correlation across participants.

https://doi.org/10.1371/journal.pbio.3002324.g003
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remains perfectly stable over time. Comparing the empirical cross-temporal decoding to

this expectation can reveal periods of relative dynamics [28]. Stimulus information was ini-

tially highly dynamic, as indicated by high cross-decoding values being concentrated along

the diagonal, but stable after stimulus offset, as indicated by significant cross-decoding far

from the diagonal (Fig 4A, top left). Given our use of fixed random dot patterns, this was

consistent with stimulus information being driven by 2 components: During stimulus pre-

sentation, information was likely dominated by moment-to-moment differences in retinal

input. After stimulus offset, the global motion content may have contributed more strongly.

Choice information was temporally more stable; still, early and late choice representations

were distinct (Fig 4A, center), in line with the observed spatial shift from sensory to motor

areas.

Choice representations are distinct from sensory and motor

representations

How did the neural representations of different variables relate to each other? The multivariate

patterns that encode any 2 variables are either orthogonal, indicating nonoverlapping underly-

ing population subspaces, collinear, indicating indistinguishable circuits underlying both rep-

resentations, or somewhere in between (Fig 4B; see also S1 Fig for further details).

Fig 4. Relationship between stimulus, choice, and response representations. (A) Cross-temporal and cross-variable decoding. Colors indicate

neural information when trained and tested on any pair of time points and variables. Pink outlines indicate clusters of shared information

between time points and variables, i.e., pairs of time points and/or variables during which cross-information is significantly different from 0 (|X-

dec.|> 0, cluster permutation, P< 0.01, N = 26, two-tailed); blue outlines indicate different representations between time points and variables,

i.e., pairs of time points and/or variables during which cross-information is significantly smaller than expected for identical representations (|X-

dec.|< expected, one-tailed). (B) Possible relationships between the representations of 2 variables. Points indicate average activity patterns for

different conditions, distances between points the strength of information. Representations may be orthogonal, collinear, or orthogonal but

linked with an interaction. (C and D) Cross-variable decoding between choice and stimulus, and choice and response, respectively. Colored lines

show neural information about each variable, gray lines cross-variable information (X-dec.), and dashed gray lines the expected cross-

information if both variables were represented identically. Horizontal lines indicate clusters of significant information (colored, P< 0.01, one-

tailed), or significantly less cross-information than expected (dashed gray, P< 0.01, one-tailed). (E) Response information for “yes” and “no”

choices. Colored lines and shaded regions in panels C, D, and E indicate the mean +/− SEM of information across participants. (F) Visualization

of the relationship between stimulus and choice representations, based on the cross-decoding values in (C). Stimulus and choice are nearly

orthogonal. (G) Visualization of the relationship between choice and response representations, including mapping as their interaction, based on

(D) and (E). Choice and response representations are nearly orthogonal, and response representations are equally strong for both choices. Thus,

there is no systematic relation between the neural patterns encoding choice, stimulus, and response.

https://doi.org/10.1371/journal.pbio.3002324.g004
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Furthermore, the representation of one variable may differ depending on the value of the

other, i.e., the 2 variables may interact. In the present data, stimulus and choice representations

may depend on identical underlying circuits. For example, sensory neurons may show the

same responses for visually presented as for imagined motion [17,29]. If such neurons consti-

tuted stimulus and choice representations, we would expect strong positive cross-information

between stimulus and choice. In contrast, if choice and stimulus information were largely

driven by distinct populations, this may result in weak cross-information; Our results were

compatible with the latter scenario. There was no significant cross-decoding between stimulus

and choice (Fig 4A, top center, biggest cluster: P = 0.11 and Fig 4C, biggest cluster: P = 0.22),

and cross-decoding was significantly lower than expected for identical representations (Fig

4A, top center, and Fig 4C, P< 0.0001).

Next, we investigated the relationship between choice and response representations. Again,

we found only weak cross-information between the 2 variables, indicating that neural choice

and response representations did not overlap (Fig 4A, middle right, biggest cluster: P = 0.15,

and Fig 4D, biggest cluster: from 0.8 to 2.55 s, P = 0.038, uncorrected). After selection of a

motor response, choices may still have been represented as a modulation of the motor signal,

e.g., leading to a relative strengthening of the activity pattern associated with the upcoming

motor response for “yes”-choices compared to “no”-choices. We thus assessed the magnitude

of response information, separately for each choice. However, we found no difference between

both conditions (P> 0.05 for all time points), indicating that even during response execution,

choices were not represented as a modulation of neural motor activity. (Fig 4E). We further

visualized these results geometrically, which well illustrated the near-orthogonality of choice

and stimulus, or choice and response signals, respectively (Fig 4F and 4G). In sum, the neural

circuit patterns underlying choice information in our MEG data were not significantly shared

with those underlying stimulus and response information, even when they were strongest in

similar areas.

Abstract choice signals may also be related to, and caused by, sequential choice biases, i.e.,

preceding choices [25,30,31]. Furthermore, when pooling over the pre- and post-conditions,

the higher signal-to-noise ratio revealed robust pre-stimulus choice information (Fig 4A, 4C

and 4D), indicating the formation of choices even before stimulus presentation, which may

well be related to sequential choice biases. We therefore repeated the analysis including the

previous choice as an additional variable and found that choice information after stimulus

onset could not be explained by the previous choice (S4A Fig). Including the previous motor

response instead of previous choice showed a sustained representation of past motor actions

[22]. However, this had an even weaker effect on choice information. Thus, neuronal choice

signals did not merely reflect the previous choice or motor response.

While our analysis already excluded the possibility that choice information was driven by

overall differences between stimuli, it could theoretically still be explained by a difference

between correct and error trials for one of the 2 stimulus classes. To eliminate this possibility,

we trained the choice decoding model on all trials and evaluated it separately on correct and

incorrect trials. As choice information was present in both cases, and had the same sign, it

could not be explained by choice accuracy (Fig 5G). In sum, abstract choice information did

not result from the representation of either previous choices or accuracy as potentially con-

founding variables.

Choice signals predict stimuli

The above results suggested that choice signals reflected an abstract decision stage that was dis-

tinct from both early sensory and motor representations. Nonetheless, behavioral choices were
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based on the presented stimuli and therefore strongly correlated with them. We thus asked

whether this relationship was reflected in the neural choice signals, or whether they were stim-

ulus independent and therefore purely internally driven. To do so, we computed single-trial

estimates of the choice signal by projecting each trial’s data onto the choice axis defined by our

multivariate analysis. We then assessed whether the sign of the single-trial choice signals pre-

dicted the stimulus. If the choice signal were purely internally driven, we would expect this

stimulus predictability to be at chance even in the presence of significant choice information.

Conversely, an influence of the stimulus on the choice signal would lead to above-chance stim-

ulus predictability. Indeed, after stimulus onset, the predictability of the stimulus increased

Fig 5. Choice representations behave like a decision variable. (A) Prediction of stimulus class from the sign of single trial choice

information. Mean +/− SEM across participants. (B) Behavioral sensitivity (d0) and meta-cognitive sensitivity (meta-d0). (C) Neural

information about choice and confidence, as well as cross-variable decoding between the two. Dotted lines indicate cross-variable

decoding using only participants performing task versions A and B, respectively. Horizontal lines denote temporal clusters of significant

information (colored lines, P< 0.01, cluster permutation, one-tailed, N = 19. Colored lines and shaded regions indicate the mean

+/− SEM of information across participants. The inset shows a visualization of the relationship between choice and confidence

representations, based on the cross-decoding values. Choice and confidence are nearly orthogonal. (D) The relationship between

decision variable, confidence, and accuracy as predicted by signal detection theory. For each of the 2 stimuli, the distribution of values of

the decision variable is centered on the respective side of the decision boundary at 0. When the absolute distance to the decision

boundary is larger, the observer is more confident in their choice. Correct and incorrect, confident and unconfident trials are color

coded as in (E). (E) Time-averaged choice information (1.25 to 4 s) in trials split by confidence and accuracy. Stars denote significance

(P< 0.05, one-tailed t test, N = 19). (F) The relationship between decision variable, accuracy, and choice as predicted by signal detection

theory. For both yes- and no-choices, the decision variable has a higher absolute magnitude in correct trials. Correct and incorrect, yes

and no trials are color coded as in (G). (G) Time-averaged (1.25 to 4 s), normalized placement on the choice axis of trials split by choice

and accuracy. Stars denote significance (P< 0.05, one-tailed t test, N = 19).

https://doi.org/10.1371/journal.pbio.3002324.g005
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until it reached a stable level for the remainder of the trial (Fig 5A, P< 0.0001, cluster permu-

tation). As expected, there was no significant stimulus predictability before stimulus onset,

even though there was a small amount of choice information (Fig 4C).

The strength of choice signals predicts decision confidence and accuracy

Our participants also reported their confidence in each trial’s perceptual choice, providing us

with further leverage to unravel the nature of the choice signals we found. Specifically, this

allowed us to test whether the choice-predictive signal merely correlated with choices, or

whether its relation to accuracy and confidence exhibited additional key properties expected

of a decision variable integrating evidence towards a choice.

First, we behaviorally assessed the relationship between participants’ choices and confi-

dence ratings. Participants were more confident in yes- than in no-choices (average propor-

tion of high confidence reports: 0.54 versus 0.47, P = 0.034, two-tailed t test) and in trials with

signal than in those with noise stimuli (0.55 versus 0.46, P = 1.4 × 10−4). In addition, and criti-

cally, they reported high confidence more often in correct trials than in incorrect trials (aver-

age proportion of high confidence reports: 0.56 versus 0.35, P = 3 × 10−7, two-tailed t test). We

quantified this relationship using the meta-d0 measure of metacognitive sensitivity [32] (Fig

5B). As expected, meta-d0 was positive (0.93 +/− 0.55, mean +/− standard deviation over par-

ticipants, t18 = 7.4, P = 7.5 × 10−7, two-tailed t test), correlated with d0 (r17 = 0.82,

P = 1.5 × 10−5, Pearson correlation), but tended to be smaller than d0 (1.23 +/− 0.49, mean

+/− standard deviation over participants, t18 = −4.1, P = 7 × 10−4, two-tailed t test). This

showed that participants veridically reported their confidence and suggested that their confi-

dence judgements were largely, but not perfectly based on the same sensory evidence as their

choices [33–36]. These results also held when we separately assessed them in the pre- and

post-conditions, and neither d0 (t18 = 1.2, P = 0.24) nor meta-d0 (t18 = 0.2, P = 0.83) were signif-

icantly different between conditions.

Secondly, we asked whether confidence was represented in the neural data. We thus

repeated our decoding analysis, now adding decision confidence as an additional variable.

There was significant neural information about confidence, starting around stimulus presenta-

tion and continually rising until the end of the trial (P< 0.01, cluster permutation statistics,

one-tailed, Fig 5C, pink line). Furthermore, also choice information remained significant and

apparently unchanged when adding confidence as an additional variable (P< 0.01, cluster per-

mutation statistics, one-tailed, Fig 5C, blue line). Given that behavioral confidence slightly cor-

related with the participants’ choices, choice information could in principle be confounded by

signals associated with the confidence reports. However, simultaneously including both vari-

ables in the analysis effectively isolated their contributions. Thus, the remaining choice infor-

mation was independent of the confidence reports. To further assess whether residual

variability of confidence within reports could account for the choice signal, we employed

cross-variable decoding between choice and confidence. We found no overlap between both

variables’ neural representations, indicating that this was not the case (P> 0.05 for all time

points, two-tailed, Fig 5C, gray line and inset). This result was the same in both task versions

(P> 0.05 for all time points, two-tailed, Fig 5C, gray dotted lines), despite a consistent confi-

dence–response mapping in task version A and a counterbalanced confidence–response map-

ping in task version B. Thus, choice information in our data was not confounded by either the

confidence reports or residual variability of confidence.

Next, we directly investigated the relation of neural choice signals to decision confidence

and accuracy. In signal detection theory and in related accumulator models of decision-mak-

ing, an internal decision variable tracks the integrated evidence for a given choice.
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Importantly, such a decision variable enables the computation of choice–confidence, as the

absolute distance to the decision boundary [37–40]. Consequentially, the absolute value of the

decision variable should be larger during high-confidence trials than during low-confidence

trials (Fig 5D, blue versus green), and, importantly independent of confidence, higher during

correct than during error trials (Fig 5D, bright versus dark colors).

To establish whether the choice signals found here could reflect an internal decision vari-

able, we trained the decoding model separately on confident and unconfident trials and tested

it separately on confident correct, unconfident correct, confident error, and unconfident error

trials. We hypothesized that, if choice information constituted an internal decision variable

reflecting the same subjective evidence used to inform confidence judgements, it would be

strongest in correct trials when confidence was high, and progressively weaker in confident

error trials, unconfident correct trials, and unconfident error trials.

Indeed, we found that the strength of choice representations descriptively followed this pat-

tern predicted by signal detection theory (Fig 5F: correct/high confidence larger than incor-

rect/high confidence, correct/low confidence, and incorrect/low confidence; P = 0.013,

P = 0.002, P = 0.001; high confidence larger than low confidence and correct larger than incor-

rect; P = 0.027, P = 0.025). Importantly, participants’ accuracy and confidence were assessed as

separate factors. Thus, the relationship between choice and confidence could not simply be

explained by accuracy or vice versa. We additionally performed this analysis separately for the

pre-cue and post-cue task conditions, after excluding the factor of response from our model in

order to retain a sufficient number of trials per condition. There was a similar pattern in both

tasks (post: correct/high confidence larger than incorrect/high confidence, correct/low confi-

dence, and incorrect/low confidence; P = 0.035, P = 0.008, P = 0.005. pre: correct/high confi-

dence larger than incorrect/high confidence, correct/low confidence, and incorrect/low

confidence; P = 0.007, P = 0.002, P = 0.023). In contrast, there was no clear relationship

between choice confidence or accuracy and the strength of stimulus or motor representations

(S5 Fig).

Finally, we investigated the relative placement of correct and incorrect trials of both choices

on the neural choice axis. As the stimulus design used was inherently asymmetric (signal ver-

sus noise stimuli), a similar asymmetry may be expected for the neural representations of yes-

and no-choices, opening the door for potential, choice-unrelated confounds. For example, the

timing of choice commitment may be different for yes- and no-choices, differentially affecting

the neural signal. While our fixed-time design did not provide access to commitment times,

there is one previous study investigating reaction times in a similar forced-response detection

task. In that study, the authors found responses to be slower for no- than for yes-choices, and

highly similar between correct and incorrect no-choices [41]. This is consistent with no-

choices occurring when the internal decision variable does not hit a bound until the response

is made. This leads to a critical prediction for the present data. If neural choice signals reflected

the time of choice commitment rather than the decision variable itself, they should exhibit a

similar pattern with a difference between yes- and no-choices but similar signals for correct

and incorrect no-choices. To test this, we trained a decoding model on all choices and tested it

separately on, first, correct yes versus correct no-choices; second, incorrect yes versus incorrect

no-choices; and third, correct yes versus incorrect no-choices. The resulting distances allowed

us to estimate the relative placement of correct and incorrect, yes and no choices on the choice

axis. As expected from a neural decision variable, these trial types were well ordered, with cor-

rect no-choices being followed by incorrect no-, incorrect yes-, and correct yes-choices (Fig 5E

and 5G, P< 0.05 for all pairwise comparisons apart from correct yes versus incorrect yes with

P = 0.12, one-tailed t tests). In contrast, this ordering does not fit well with a timing confound

arising from a potential asymmetry between yes- and no-choices.
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In sum, our behavioral results pointed to the existence of an internal decision variable,

which informed both choices and confidence ratings. Furthermore, the strength of the choice-

predictive neural signal varied with confidence and accuracy, precisely following a pattern pre-

dicted from signal detection theory. Thus, neural choice information measured in MEG did

not only predict abstract perceptual choices but appeared to reflect the underlying internal

decision variable.

Discussion

Studies of the neural basis of sensorimotor decision-making have often neglected abstract,

motor-independent choices [42]. This is rooted in the fact that many real-world choices appear

to be choices between motor actions [1] and in the difficulty of accessing signals representing

purely abstract choices. On the one hand, in animal studies, which provide the majority of evi-

dence in support of neural circuits selective for specific choice options, behavioral tasks that

disentangle choices from motor responses are very challenging. Noninvasive human studies,

on the other hand, struggle to read out choice contents and thus mostly provide indirect evi-

dence for choice-related neural activity. Consequently, studies comparing the representation

of choices in abstract and action-linked contexts are rare. A small number of notable excep-

tions have provided intriguing results [5,9,13] but not established a unified account of the role

and extent of abstract choice signals.

By combining noninvasive MEG in humans with an advanced multivariate analysis frame-

work, we robustly read out abstract choice contents from whole-brain neural activity. In accor-

dance with current theories [39,40], abstract choice representations predicted decision

confidence and accuracy. This indicates that this neural signal did not merely correlate with

categorical choice but reflected the underlying decision variable. In sum, our findings point to

an important role of abstraction in decision-making, even in a simple task involving a known

sensorimotor mapping.

Abstract choices were represented in brain activity not onlyAU : PleasecheckandconfirmthattheedittoAbstractchoiceswererepresentedinbrainactivitynotonlywhen:::didnotaltertheintendedmeaningofthesentence:when decisions had to be made

abstractly but also when the sensorimotor mapping was known in advance. Importantly, our

cross-decoding analysis showed that choice representations in both task contexts were indis-

tinguishable from one another. While the fundamental limits of MEG spatial resolution and

sensitivity prevent the conclusion that the underlying circuit representations are identical, this

striking similarity requires any potentially remaining differences between conditions to be

small and of a type that MEG is blind to.

Our finding of abstract choice representations generalizing between contexts in which

actions can be planned and those in which they cannot is in line with behavioral evidence sug-

gesting analogous mechanisms underlying decision-making in action-linked and action-inde-

pendent contexts [43]. Moreover, recordings in macaque lateral intraparietal area (LIP)AU : PleaseprovidefullspellingforLIPatfirstmentioninthesentenceMoreover; recordingsinmacaqueareaLIPhavefoundthechoice:::ifthisindeedisanabbreviation:have

found the choice selectivity of neurons to be similar, regardless of whether a motor action was

specified or not [9]. Our results extend this finding to the whole-brain level, indicating that the

dominant sources of choice-selective signals generalize between contexts. Intriguingly, a recent

study found representations of the decision variable in area LIP that were not tightly linked to

the population’s oculomotor selectivity but varied in a task-dependent manner [44]. These

task-dependent representations are compatible with abstract, motor-independent choice rep-

resentations computed in LIP or elsewhere [45] as reported here. Furthermore, our findings

accord well with research implicating a centro-parietal positivity (CPP) as an electrophysiolog-

ical marker of evidence accumulation [46,47]. The CPP exhibits several properties of a

domain-general, abstract-neural decision variable; however, while it gradually builds up with

the absolute amount of evidence, it has not been shown to carry information about the choice
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itself [48]. Thus, the CPP, as an unsigned marker of integration, and the specific choice signals

found in the present study may reflect different aspects of the same underlying process.

This—as well as any other—decision-making study lives off the fact that sometimes partici-

pants make different choices for identical stimuli. How does this variability arise? In principle,

2 broad, and not mutually exclusive, classes of explanations exist. First, it could be bottom-up

driven, with sensory noise having a causal effect on choices. This sensory noise could be inter-

nal, arising from the inherent variability in neural responses for identical stimuli, or due to

uncontrolled external variability, such as small differences in the stimulus itself. Second, it

could be top-down driven, with internal factors such as expectations, biases, or beliefs or sim-

ply nonsensory noise pushing choices one or the other way. Several of our results consistently

suggest that the demonstrated choice signals are positioned at an intermediate stage between

these extremes. First, if the choice signals directly reflected sensory noise, we would expect this

noise to inhabit the same neural subspace as the stimulus signals themselves—in other words,

there should be strong cross-information between stimulus and choice. In contrast to this, our

results are better compatible with choice signals reflecting integrated sensory noise represented

distinctly. For example, one may expect to find instantaneous sensory noise represented in the

middle temporal visual area (MT)AU : PleaseprovidefullspellingforMTatfirstmentioninthesentenceForexample; onemayexpecttofindinstantaneoussensorynoise:::ifthisindeedisanabbreviation:, but integrated sensory information, and therefore inte-

grated noise as well, represented in area LIP. Notably, such an integration stage would still be

expected to be modulated by the stimulus, which may lead to stimulus-choice cross-informa-

tion, but only subtly so. In our data, this effect did not result in significant cross-information

but was nonetheless apparent in the hypothesis-driven finding of stronger choice signals in

correct than in error trials. Second, we found that signed choice information predicted the

stimulus—despite near-orthogonality of the representations of both variables. This suggests

that choice information was indeed reflective of a stage separate from but influenced by the

early sensory representation. This prediction increased during stimulus presentation and then

remained stable, similar to the choice information time course itself, and consistent with the

time course expected from temporal integration. In contrast, choice signals at an instanta-

neous, early sensory nonintegration stage would also predict the stimulus, but predictions

should be at the same level throughout the stimulus presentation interval, and subsequently

taper off. Third, we found small amounts of choice information before stimulus presentation.

As these could not have arisen due to the stimulus, they must reflect intraneous factors. In con-

clusion, the most parsimonious explanation for our data is an intermediate choice stage that

reflects both accumulated sensory evidence and top-down contributions, akin to an internal

decision variable. Importantly, these considerations allow us inferences about the nature of the

measured signal, regardless of its exact anatomical origin. While reflecting an intermediate,

abstract stage, the choice signal may well be fed back or forward to sensory or motor popula-

tions [24,25,49], respectively, and contribute to MEG decodability in these areas.

The stimuli used in the present study, and therefore the corresponding choices, were inher-

ently asymmetric. One may ask if this asymmetry could underlie the decodablity of choices:

An unobserved, confounding variable correlated with choice may result in the seeming read-

out of choice information. To address this, we ruled out potential confounds associated with

stimulus asymmetry. First, our finding of a significant difference of the choice signal between

correct and incorrect no-choices is incompatible with a timing-related confound due to this

asymmetry [41]. Second, could there be a default no-choice encoded at the beginning of the

trial, which may then be modified upon the presentation of the stimulus? The ability to decode

choices before stimulus onset suggests the existence of a pre-stimulus prior. However, this

prior needs to be variable at least in magnitude, if not in sign, to push the choice either way

and thus lead to decodable information. Furthermore, participants performed equally well for

coherent and incoherent stimuli, indicating that they did not exhibit a strong bias due to the
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stimulus asymmetry or any potential default behavior. Third, the slight correlation between

behavioral confidence and the participants’ choices could not account for our results because

there was residual choice information within each confidence level, and the neural representa-

tions of choice and confidence were orthogonal and followed distinct time courses. Even more

generally, any confounding variable would have to exhibit the properties of the choice signal

demonstrated here: small, but existing pre-stimulus differences between choices, a modulation

by confidence and accuracy even within no-trials, and a trial-by-trial predictability of the stim-

ulus. In sum, we ruled out potential asymmetry-related confounds and generally found no

indication that the asymmetric task-design could confound our results.

The cortical distribution of abstract choice signals may be modulated by response modality.

Recent work using fMRI suggested that, for vibrotactile comparisons, abstract choice represen-

tations are present in nonoverlapping, modality-specific cortical areas [19,50]. On the other

hand, direct neuronal recordings have shown the representation of recognition and categoriza-

tion choices in medial frontal cortex to generalize between manual and saccadic responses

[16]. The accessibility of such modality-independent representations of choice likely depends

on the specific behavioral task and type of neural measurement. Research combining multiple

measurement scales [51–53] should help resolving this. Our results only have indirect implica-

tions for the modality dependence of choice signals because participants eventually always

reported their choice using a button press. Nonetheless, the broad availability of choice repre-

sentations across the brain, in conjunction with the shift of the information peak from visual

sensory to motor areas is consistent with the coexistence of modality-independent and modal-

ity-specific components.

Perceptual decisions involve a complex interaction of feedforward and feedback processes

throughout the brain [25,49,54]. Here, we found that the spatial peak of abstract choice infor-

mation shifted throughout the trial, reflecting the currently relevant stage [25,55]. This does

not necessitate that choices originate in sensory cortex and are later relayed to motor cortex; in

fact, choices may be computed elsewhere but be preferentially accessible in currently engaged

areas. The global availability of choice information is in line with either a distributed computa-

tion that involves recurrent interactions, or a global broadcast of choice signals [24,25], for

example, through feature-attentional mechanisms [49]. Further studies including invasive and

manipulative approaches are required to pinpoint where and by which mechanisms abstract

choices are computed.

A growing body of evidence has related the formation of action-linked sensorimotor deci-

sions to activity in motor and premotor areas [2,3,5,26,42,54]. Our findings are well compati-

ble with these results: The presence of an abstract choice stage does not preclude the

simultaneous planning and competition of multiple response options or a general unspecific

response preparation [26,56]. Indeed, we found fluctuations in motor cortical beta band activ-

ity to predict upcoming motor responses, independently of the perceptual choice [22,57].

These response-predictive beta band signals ramped up upon stimulus presentation in the

“pre”-condition, as expected due to the earlier availability of the choice–response mapping.

Notably, this ramp-up happened earlier than the appearance of response information in the

broadband electrophysiological signals, underpinning the well-known role of beta band activ-

ity as a specific marker of motor preparation [47]. This indicates that in the case of a known

physiological marker such as the beta-band lateralization, a targeted analysis can be more sen-

sitive than the uninformed whole-brain decoding strategy employed throughout this study.

Taken together, these findings support a multilevel model of decision-making involving simul-

taneous evaluation of abstract choices as well as motor actions [58]. The relevance of an

abstract choice level may be understood in light of phenomena like perceptual priors [59,60],

sequential choice biases [22,31], or value computations associated with the choices themselves
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[61], which all require and act on abstract choice representations. The primate brain, which is

able to assess abstract options and treat decision-making problems as arbitrary categorization

[15,62], may do so even when not strictly necessary. Importantly, this can still be reconciled

with an intentional framework of decision-making, if intentions are not only about actions,

but also rules, or activations of neural circuits in general [39,58].

We conclude that an abstract choice stage may be universally present in human perceptual

decision-making, enabling the evaluation of motor-independent choice options even during

action-linked decisions.

Methods

Ethics statement

Participants provided written informed consent prior to the start of the experiment. The study

was conducted in accordance with the Declaration of Helsinki and was approved by the ethical

committee of the Medical Faculty and University Hospital of the University of Tübingen

(approval number 419/2011 B02).

Participants

A total of 33 healthy, right-handed human volunteers (18 female; mean age: 28 y; 3 y SD) par-

ticipated in this study and received monetary reward. All participants had normal or cor-

rected-to-normal vision.

Behavioral task and stimuli

Participants performed a flexible sensorimotor decision-making task. In each trial, they had

to decide whether a random dot kinematogram contained coherent downwards motion or

not and reported their choice with a left- or right-hand button press. Crucially, the mapping

between response hand and choice varied on a trial-by-trial basis. Moreover, the mapping

was revealed either before (pre-condition) or after (post-condition) the stimulus. Addition-

ally, an irrelevant cue was presented after (pre-condition) or before (post-condition) the

stimulus.

Participants started a trial by acquiring fixation on a fixation spot. After a fixation period,

the first cue appeared for 250 ms, followed by a delay of 1,000 ms, the presentation of the ran-

dom dot stimulus for 2,000 ms, another 1,000-ms delay, and the second cue for 250 ms. A

third 1,000-ms delay was followed by a 33-ms dimming of the fixation spot, which served as

the go-cue for the participant’s response. The response consisted in a button press using the

left or right index finger, according to the choice and the choice–response mapping. Partici-

pants chose one of 2 buttons on either side to indicate whether they were confident in their

choice or not. ParticipantsAU : PleasenotethatasperPLOSstyle; numeralsarenotallowedatthebeginningofasentence:PleasecheckandconfirmthattheedittoParticipantsreceiveda100 � msvisualfeedbackðcentrallypresentedcircle:::iscorrect; andamendifnecessary:received a 100-ms visual feedback (centrally presented circle, 2.1

degree diameter, red for incorrect or green for correct), 250 ms after their response.

The random dot stimuli consisted of 1,500 white dots with a diameter of 0.12 degrees, pre-

sented in an 8.5 degree diameter circular aperture on a black background. Dots moved at a

speed of 10 degrees per second. For each participant, we used only 2 stimuli, each presented in

half of the trials: First, a target stimulus, in which, on each frame, a fraction of dots moved

coherently downwards, whereas the rest moved in random directions. Second, a noise stimu-

lus, in which all dots moved in random directions. In a separate session before the MEG

recordings, the motion coherence of target stimuli was titrated to each participant’s individual

perceptual threshold using a staircase procedure with 280 trials. Motion coherence was adap-

tively lowered by one level after each correct choice and increased by 2 levels after each
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incorrect choice. To determine the coherence threshold, a Weibull function was fit to the

resulting data, excluding the first 50 trials. Choice–response cues and irrelevant cues all had

the same luminance and size (0.85 degree diameter).

Each participant took part in 2 recording runs of one of 2 task versions, which differed in

the details of the choice–response cue as well as the confidence report. Participants 1 to 20

performed version A: Here, the choice–response cue consisted of a centrally presented red or

green square (yes = right hand: green; yes = left hand: red), whereas the irrelevant cue was a

blue square. The outer button always indicated a confident, the inner one an unconfident

choice. In this version, the fixation baseline at the beginning of each trial lasted 1,500 ms.

Each recording run consisted of 400 randomly ordered trials, of which 120 were pre-cue tri-

als, 120 post-cue trials, and 160 belonged to one of 2 control conditions not reported here.

Participants 21 to 33 performed version B: Here, the choice–response cue consisted of 2 ver-

tical rectangles (yes = right hand: left rectangle mint, right rectangle pink; yes = left hand: left

rectangle pink, right rectangle mint) forming a square, whereas the irrelevant cue consisted

of 2 horizontal rectangles (upper: pink, lower: mint). The confidence mapping (inner or

outer button for confident/unconfident responses) was changed in each recording run.

Here, the fixation baseline was 1,000 ms. Each run consisted of 400 randomly ordered trials,

200 of which were pre-cue and 200 post-cue trials. The changes in version B were designed

to minimize sensory and motor confounds in a separate analysis of task- and confidence-

related effects (not reported here). The data from version A were previously used in another

publication [22].

To ensure that participants were performing both task conditions well, we computed over-

all accuracy as the percentage of correct trials. We used a two-tailed paired t test to test whether

accuracy was different between task conditions. To make sure participants did not systemati-

cally associate one of the motor responses with one of the choices, we computed the percentage

of “right” button presses for “yes” and “no” choices separately and compared both against 50%

using two-tailed t tests.

Setup and recording

We recorded MEG (Omega 2000, CTF SystemsAU : PleasenotethatasperPLOSstyle; donotuseInc:; Ltd:; etc:exceptasappropriateintheaffiliations:Hence; allinstancesof Inc:havebeenremovedfrommanufacturer=companynamesthroughoutthetext:, Port Coquitlam, Canada) with 275 channels

at a sampling rate of 2,343.75 Hz in a magnetically shielded chamber. Participants sat upright

in a dark room, while stimuli were projected onto a screen at a viewing distance of 55 cm

using an LCD projector (Sanyo PLC-XP41, Moriguchi, Japan) at 60 Hz refresh rate. Stimuli

were constructed offline and presented using the Presentation software (NeuroBehavioral Sys-

tems, Albany, CA, USA). To ensure continuous fixation, we recorded eye movements using an

Eyelink 1000 system (SR Research, Ottawa, Ontario, Canada).

Preprocessing

We used time-domain data for the decoding analyses. Thus, we low-pass filtered MEG and

eye-tracking data at 10 Hz (two-pass forward-reverse Butterworth filter, order 4) and down-

sampled to 20 Hz to maximize SNR by reducing the impact of high-frequency noise, to focus

our analysis on slow cortical potentials that may be linked to the gradual build-up of a decision

variable, and to avoid the necessity for any effects to be precisely temporally aligned across tri-

als. Trials containing eye blinks were rejected. We chose not to apply a high-pass filter in order

to avoid filter artefacts [63]. At the same time, we could not use a baseline correction as choice

effects could plausibly be driven by previous trials. We thus used robust detrending [64] to

remove polynomial trends from the MEG data, but not the eye tracking data, in a piecewise
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fashion (600-s pieces, removal of linear trend followed by 10th order polynomial). Data of 3

participants was rejected due to metal artifacts.

Source reconstruction

For source reconstruction based on each participant’s individual anatomy, we recorded struc-

tural T1-weighted MRIs (echo time (TE) = 2.18 ms, repetition time (TR) = 2.3 ms, longitudinal

relaxation time (T1) = 1.1 ms, flip angle = 9˚, 192 slices, voxel size 1 × 1 × 1 mm3) with a Sie-

mens 3T Tim Trio scanner and a 32 channel Head Coil. We generated single-shell head mod-

els [65] and estimated three-dimensional (x, y, and z-direction) MEG source activity at 457

equally spaced locations 7 mm beneath the skull, using linear spatial filtering [66]. We

retained, for each source, activity in all 3 directions and concatenated the data of the 2 separate

recording runs per participant. For all subsequent analyses, we reduced the dimensionality of

this 1,371-dimensional source space: For all whole-head decoding analyses, we performed

principal component analysis, retaining the 75 components with the largest variance across all

combinations of task variables. For searchlight analyses, we used each of the 457 sources’

immediate neighbors, including all 3 dipole directions.

Task variables and cross-validation scheme

The experimental design resulted in a number of variables of which each trial instantiated a

combination. For each trial, we defined the task (pre- or post-cue), stimulus (target or noise),

response (left- or right-hand button press), mapping (target = left or target = right), choice

(yes/target or no/noise), accuracy (correct or incorrect), and confidence (high or low). Not all

of these variables were independent of each other: For a given stimulus and choice, accuracy is

fixed; and for a given choice and mapping, response is fixed. Thus, 5 independent variables

giving rise to 32 conditions remained (S1A Fig). While those variables under experimental

control (task, stimulus, mapping) were fully balanced, those dependent on the participants’

behavior (choice, response, confidence, accuracy) were not, leading to a nonuniform sampling

of conditions (S1A Fig). To ensure an accurate estimation of neural information about each

variable, independent of the others, we implemented an n-fold cross-validation scheme, where

n was the lowest trial count per condition. Thus, for each cross-validation fold, both training

and test data contained trials of all conditions. In order to decrease the dependence of our

results on a particular random partition into folds, we repeated each analysis 10 times, with

different random seeds. All results were averaged across these random seeds before further

processing.

Due to the variability in behavioral responses, as well as the rejection of trials containing

eye blink artefacts, we did not retain the same amount of trials from each condition for all

participants. However, to accurately estimate neural information, we needed to ensure that,

first, there were trials of each condition, and second, the total number of trials was large

enough in comparison to the dimensionality of the data to enable an unbiased estimate [20].

Specifically, each analysis requires at least N + K + 1 trials, where N is the number of chan-

nels and K is the number of independent variables in the model. For our main analyses (Figs

2, 3 and 4, S2 and S3 Figs), including task, stimulus, choice, response, mapping, and accu-

racy as variables, data from 26 participants had sufficient trials. When additionally including

confidence as a variable, but neglecting the task condition (Fig 5 and S5 Fig), we retained 19

participants. To assess the effect of confidence separately for both task conditions, we used

all variables apart from response, leading again to 19 usable participants. To assess the effect

of the previous choice in relation to the current choice (S4A Fig), we neglected the task con-

dition as well as confidence and included stimulus, choice, response, mapping, accuracy,
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and previous choice. This left us with data from 23 participants. To assess the effect of the

previous motor response in relation to the current choice (S4B Fig), we neglected the task

condition as well as confidence and included stimulus, choice, response, mapping, accuracy,

and previous response. This left us with data from 25 participants. Importantly, when

restricting all analyses to the core subset of 19 participants for which every analysis was pos-

sible, our main results were virtually identical (S6 Fig). For all decoding analyses, we com-

bined source level data from both recording runs per participant. Using source-level data

allowed us to reduce between-run variance and reduce nonneural variability. To do so, we

normalized the data per channel, time point, and run over trials and then concatenated data

of both runs.

Cross-validated MANOVA

We used cross-validated MANOVA [20,21] to estimate the amount of information in multi-

variate MEG data about the task variables of interest. CVMANOVA estimates the variability

explained by the task variables in relation to unexplained noise variability. Here, we reimple-

mented cvMANOVA for time-resolved data, adding the capability of cross-decoding by train-

ing and testing the model on different time points, variables, or levels of any variable. To this

end, we first estimated a baseline noise covariance matrix, using trials from all unique condi-

tions. We then “trained” the model by estimating contrasts of beta weights of each unique con-

dition in a cross-validation fold’s training set and “tested” it by estimating contrasts of beta

weights in the fold’s test set. An estimate of true pattern distinctness was computed as the dot

product of these contrasts, normalized by the noise covariance:

D ¼ trace
1

n
B0trainCtrainC

� 1

trainX
0

testXtestCtrainC
� 1

testBtestS
� 1

� �

where Xtest is the design matrix indicating the unique condition of each trial in the test set,

Ctrain is the contrast vector the model is trained on, Ctest the test contrast vector and S−1 the

inverted noise covariance matrix. Btrain and Btest contained the regression parameters of a mul-

tivariate general linear model

Btrain ¼ X� 1

trainYtrain

Btest ¼ X� 1

testYtest

where Ytrain and Ytest are the training and test data sets. The inverted noise covariance matrix

S−1 was estimated using data from a baseline time point (−0.5 s with respect to the onset of the

first cue):

Btrainbl
¼ X� 1

trainYtrainbl

X ¼ Ytrainbl
� XtrainBtrainbl

S� 1 ¼ f E � p � 1ð Þ � X0Xð Þ
� 1

with fE being the degrees of freedom and p the number of sources used. X was regularized

towards the unity matrix using a regularization parameter of 0.05.

Because the design matrix and contrast vector include all unique conditions, i.e., all com-

binations of variable levels (S1 Fig), cvMANOVA independently quantifies information

about each variable of interest, while not being confounded by information about the other,
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potentially correlated variables. In other words, cvMANOVA quantifies the pattern distinct-

ness explained by each variable after discounting the patterns explained by all other vari-

ables included in the model. Importantly, cvMANOVA effectively controls imbalances in

the distribution of trials over conditions without explicit stratification and the resulting loss

of data.

While cvMANOVA technically constitutes an encoding framework—modelling data vari-

ability due to experimental variables—it shares many similarities with commonly used multi-

variate decoding methods [67]. Notably, cvMANOVA uses out-of-sample cross-validation to

provide a measure of the information contained in neural data about the variables of interest.

These estimates can, in principle, also be used to decode experimental variables on individual

trials. Due to this close relationship, and to highlight the link to the extensive multivariate

decoding literature, we often refer to our results as decoding results.

Cross-decoding

To achieve cross-condition decoding, we constructed contrast vectors Ctrain and Ctest to

only contain the conditions to be trained or tested on, respectively. We applied this to esti-

mate neural information within and across the 2 task conditions (pre and post), as well as

the 2 confidence levels, and the 2 choices. Additionally, we also used a model trained on all

trials and tested it separately on correct and incorrect trials. To estimate whether informa-

tion was shared between time points, we computed the pattern distinctness when using

regression parameters Btrain from one time point, and Btest from another. We repeated this

for every pair of time points. In order to assess whether 2 variables shared a common rep-

resentational space, we used cross-variable decoding. We implemented this by using a

training contrast Ctrain differentiating between the levels of one variable, and a test contrast

Ctest differentiating between the levels of another. Before further processing, all decoding

time courses were smoothed using a Hanning window (500 ms, full width at half maxi-

mum). Time–time generalization matrices were smoothed using a 2D, 100 ms Hanning

window.

Geometric visualization of representational similarity

We reconstructed low-dimensional geometric representations of neural activity in multiple

conditions using the decoding results. Decoding and cross-decoding values between multiple

variables define the distances and angles of condition difference vectors. We used these to plot

subsets of conditions in 2D spaces defined by the axes spanned by 2 variables of interest. For

example, in Fig 4G, the length of the choice and response vectors is given by the magnitude of

choice and response information, respectively; the angle between both is given by the cross-

decoding between the 2 variables. The mapping vector reflects the projection of mapping

information onto the 2D space spanned by choice and response information, indicating that

mapping is not represented as an interaction between choice and response.

Searchlight analysis

We repeated our main analysis in a searchlight fashion, in order to estimate the spatiotempo-

ral distribution of neural information throughout the trial. For each of the 457 sources, we

used cvMANOVA on that source as well as its immediate neighbors, including all 3 dipole

directions. In order to maintain comparability between sources, we normalized the resulting

pattern distinctness values by the square root of the size of the searchlight [20,21]. After aver-

aging over both hemispheres, we split the searchlight decoding results of all 457 sources into

4 distinct groups (occipital, temporal, central, frontal) based on a previous parcellation into
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15 anatomical areas [68]. We then averaged within each of these areas to maximize the SNR

of our MEG data with inherently low spatial resolution, in order to show the spatiotemporal

dynamics of neural information. To quantify a shift in choice information from sensory to

motor areas, we correlated, for each participant, the cortical distribution of choice informa-

tion during each time point with the distribution of stimulus information during stimulus

presentation (1.25 s to 3.25 s), and with the distribution of response information during

response execution (from 5.5 s). Statistical significance was assessed using one-tailed cluster

permutation tests.

Expected cross-decoding

The maximal amount of shared information between 2 contexts depends on the amount of

information available in each individual context. Thus, in order to assess whether 2 representa-

tions are different, the strength of both representations has to be taken into account and com-

pared with the strength of the shared representation. We thus estimated the expected cross-

decoding

E12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jD1D2j

p
� signðD1Þ � signðD2Þ

where D1 and D2 denote the pattern distinctness in the 2 contexts. The cross-decoding D12

between both contexts would be expected to approach E12 for identical representations. Any

cross-decoding values smaller than E12 indicate that the representations are not fully

overlapping.

Single-trial stimulus prediction

To test whether neural choice representations were informed by the stimulus, we projected

each trial’s neural data onto the multivariate axis spanned by yes and no choices as defined by

the cvMANOVA model. We then computed the sign of these single-trial estimates to assess

whether it corresponded to the stimulus class.

Eye movement control

While we ensured continuous fixation using an online eye movement control at the beginning

of each trial, small eye movements can still plausibly confound MEG signals [69]. We thus

repeated our main decoding analysis (Fig 2) using eye-tracking data. For this purpose, we

selected the x-position, y-position, and pupil size signals and averaged them over both eyes.

Additionally, we computed the eye position eccentricity as sqrt(x2+y2). We then applied the

same decoding analysis using cvMANOVA, using these 4 channels. We split the 26 partici-

pants into the 13 with the highest and lowest choice information in their eye signals, respec-

tively. This revealed that in a subset of participants, eye signals were predictive of choice. To

test whether this could plausibly explain the neural choice information, we compared the

choice decoding time courses in both splits. As neural choice decoding was, if anything,

weaker in those participants with higher choice decoding from the eye signals, the neural

decoding was unlikely to be explained by eye movements (S3 Fig).

Statistical analysis

We assessed the statistical significance of information using cluster-based sign permutation

tests. After determining temporally contiguous clusters during which pattern distinctness was

higher than 0 (one-tailed t test over participants, P< 0.05), we randomly multiplied the infor-

mation time-course of each participant 10,000 times with either 1 or −1. In each random
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permutation, we recomputed information clusters and determined the cluster mass of the

strongest cluster. Each original cluster was assigned a p-value by comparing its size to the dis-

tribution of sizes of the random permutation’s strongest clusters. The same procedure was

used for cross-decoding analyses, however, using two-tailed t tests as true cross-decoding can

also be negative. We also tested differences in information using this strategy, namely, between

response information during “yes” and “no” choices (Fig 4E). To test for differences between

high- and low-confidence correct and error trials, we averaged data over appropriate time-

periods (1.25 to 5.5 s for choice information) and used one-tailed t tests, as we had a clear uni-

directional hypothesis derived from signal detection theory. To determine whether the multi-

variate patterns underlying 2 representations were significantly different, we tested whether

the empirical cross-decoding was smaller than the expected cross-decoding, again using clus-

ter-based sign permutation tests. Cross-temporal generalization and dynamics were assessed

analogously, however, using 2D clusters.

Software

All analyses were performed in MATLAB, using custom code as well as the Fieldtrip [70] and

SPM toolboxes. For meta-d0 analyses, we used code from http://www.columbia.edu/~

bsm2105/type2sdt/ [32].

Supporting information

S1 Fig. Task variables and analysis schematic. (A) Task conditions and behavioral responses.

Each combination of the binary task variables constituted one of 32 separate conditions.

Because behavioral variables were partially correlated among each other and with experimen-

tally controlled variables (e.g., confidence vs. accuracy and choice vs. stimulus), the number of

trials varied across the 32 unique conditions. The rows with variables below the histogram cor-

respond to the contrast vectors employed in the cross-validated MANOVA. (B) We performed

multivariate pattern analysis using cross-validated MANOVA to estimate the difference D

between MEG source level patterns associated with the 2 levels of each task variable. Impor-

tantly, cross-validated MANOVA allowed to independently quantify information about each

variable without confounding of other, potentially correlated variables. Each dot represents

MEG activity during one of the 32 conditions. For example, choice information is computed

as the contrast between all conditions containing “yes” trials and those containing “no” trials

(middle), stimulus information as the contrast between conditions containing “signal” and

“noise” trials (right). For our main analyses, this procedure was applied to the action-linked

(“pre”) and action-independent (“post”) contexts separately. Using a cross-decoding frame-

work, the angle between Dpre and Dpost enabled us to assess the degree of similarity between

representations of any given variable during action-linked and action-independent contexts.

(TIFF)

S2 Fig. Motor cortical beta lateralization. Beta lateralization predictive of each trial’s

response hand was computed for pre- and post-conditions in an individually localized source

in motor cortex for each participant. Horizontal bars indicate significant clusters (cluster per-

mutation, two-tailed, P< 0.05). Colored lines and shaded regions indicate the mean +/− SEM

across participants.

(TIFF)

S3 Fig. Choice information in eye-tracking data. (A) Choice information contained in eye

traces (x and y position, eccentricity, and pupil size), split into the 13 participants with the

highest decoding values, and the 13 participants with the lowest. Eye traces were thus
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predictive of choice in a subset of participants. (B) Choice information contained in MEG

data, split into the same groups as in (A). Participants in whom the eye traces were predictive

of choice did not show stronger decoding of choice from MEG data (one-tailed t test, P> 0.05

for all time points). This indicates that choice information in MEG was not driven by eye

movements or pupil size. (C) There was no positive across-subject relationship between the

amount of choice information contained in eye traces and the amount of choice information

contained in MEG data. Colored lines and shaded regions indicate the mean +/− SEM of

information across participants.

(TIFF)

S4 Fig. Previous trial information. (A) There was no significant information about the previ-

ous choice, and information about the current choice remained significant when including

previous choice as a variable. Horizontal lines indicate clusters of significant information (clus-

ter permutation, P< 0.01, N = 23). (B) There was significant information about the previous

motor response throughout the trial, but information about the current choice and response

remained significant when including previous response as a variable. Horizontal lines indicate

clusters of significant information (cluster permutation, P< 0.01, N = 25). Colored lines and

shaded regions indicate the mean +/− SEM of information across participants.

(TIFF)

S5 Fig. Stimulus and response representations do not exhibit properties of a decision vari-

able. Time-averaged stimulus information (1.25 to 3.5 s) and response information (3.25 to

6.5 s) in correct and error, and high- and low-confidence trials. The model was trained on

both correct and error trials, but trials were split by accuracy for testing. Stars denote signifi-

cant differences (P< 0.05, two-tailed t tests, N = 19).

(TIFF)

S6 Fig. Main results in a core subset of 19 participants. We replicated the main results of

Figs 2 and 3, using data from only the same 19 participants that were used in the confidence

analyses in Fig 5. (A) Neural information in the pre- (darker colors) and post-conditions

(brighter colors), as well as empirical (grey) and expected cross-information. All conventions

as in Fig 2. (B) Time-resolved stimulus (top), response (middle), and choice (bottom) informa-

tion in 4 groups of sources, as in Fig 3. All conventions as in Fig 3. (C) Correlation of the corti-

cal distribution of choice information with the distribution of peak stimulus information (red)

and peak response information (yellow), as in Fig 3. All conventions as in Fig 3.

(TIFF)

S7 Fig. Main results are similar between task versions. We replicated the main results of Fig

2, using data from each task version separately. (A) Neural information in the pre- (darker col-

ors) and post-conditions (brighter colors), as well as empirical (grey) and expected cross-infor-

mation in task version A. All conventions as in Fig 2. (B) Neural information in task version B.

(TIFF)
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