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a b s t r a c t 

Distinguishing groups of subjects or experimental conditions in a high-dimensional feature space is a common 

goal in modern neuroimaging studies. Successful classification depends on the selection of relevant features as 

not every neuronal signal component or parameter is informative about the research question at hand. Here, 

we developed a novel unsupervised multistage analysis approach that combines dimensionality reduction, boot- 

strap aggregating and multivariate classification to select relevant neuronal features. We tested the approach by 

identifying changes of brain-wide electrophysiological coupling in Multiple Sclerosis. Multiple Sclerosis is a de- 

myelinating disease of the central nervous system that can result in cognitive decline and physical disability. How- 

ever, related changes in large-scale brain interactions remain poorly understood and corresponding non-invasive 

biomarkers are sparse. We thus compared brain-wide phase- and amplitude-coupling of frequency specific neu- 

ronal activity in relapsing-remitting Multiple Sclerosis patients ( n = 17) and healthy controls ( n = 17) using 

magnetoencephalography. Changes in this dataset included both, increased and decreased phase- and amplitude- 

coupling in wide-spread, bilateral neuronal networks across a broad range of frequencies. These changes allowed 

to successfully classify patients and controls with an accuracy of 84%. Furthermore, classification confidence 

predicted behavioral scores of disease severity. In sum, our results unravel systematic changes of large-scale 

phase- and amplitude coupling in Multiple Sclerosis. Furthermore, our results establish a new analysis approach 

to efficiently contrast high-dimensional neuroimaging data between experimental groups or conditions. 
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. Introduction 

Normal brain function requires coordinated interactions of neuronal

nsembles that are widely distributed across the brain. Modern non-

nvasive brain imaging techniques, such as e.g., MEG and fMRI provide

ull-brain coverage, and thus, do not only allow to simultaneously mea-

ure the activity across many brain regions, but also to characterize their

oupling ( Hipp and Siegel, 2015 ; Palva et al., 2018 ; Wang et al., 2018 ),

hich has been linked to, for example, perception ( Hipp et al., 2011 ),

emory ( Fell and Axmacher, 2011 ; Oswald et al., 2017 ; Palva et al.,

010 ), conscious state ( Dehaene and Changeux, 2011 ) and various neu-

opsychiatric disorders ( Fornito et al., 2015 ; Hawellek et al., 2013 ;

euvel and Sporns, 2019 ; Kitzbichler et al., 2015 ; Koelewijn et al., 2017 ;

swal et al., 2016 ; Pineda-Pardo et al., 2014 ; Stam, 2014 ). 

The quantification of neuronal coupling for thousands of pairs of

rain regions yields a very large, i.e. high-dimensional feature space,
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n which differences between populations, experimental conditions or

euronal states can be investigated. However, several caveats have to

e taken into account that complicate an exploratory analysis of such

igh-dimensional data. First, without a hypothesis-driven restriction of

he tested feature space, the direct comparison of brain-wide coupling

s impeded by the large-number of connections and corresponding com-

arisons ( Hipp et al., 2011 ; Pappu and Pardalos, 2014 ). Second, the

xperimental effects may entail multivariate interactions between fea-

ures. These interactions are missed by a mass-univariate approach. Mul-

iple high-dimensional classification algorithms have been developed to

ease these interactions apart (see for example Kriegeskorte et al., 2008 ;

ur et al., 2009 ). However, as pointed out not all features are infor-

ative and thus classification accuracy suffers when non-informative

imensions predominate the feature space ( Pappu and Pardalos, 2014 ).

he central goal of this study was to address these problems of unsuper-

ised feature selection to improve the comparison of brain-wide neu-
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onal coupling between populations. To this end, we developed a novel

ultistage analysis approach that combines dimensionality reduction,

ootstrap aggregating and multivariate classification. 

To test our approach, we employed it to explore changes of brain-

ide electrophysiological coupling in Multiple Sclerosis. Multiple Scle-

osis (MS) is an inflammatory, demyelinating secondary neurodegen-

rative disease ( Dendrou et al., 2015 ). From early disease stages on

nd during disease progression ( Amato et al., 2010 ), accumulating

hite-matter lesions and cortical atrophy can lead to cognitive de-

line and physical disability ( Chiaravalloti and DeLuca, 2008 ). The

igh temporal resolution of MEG and EEG allows to characterize

he frequency-specific coupling of neuronal activity, which may re-

ect ( Hipp and Siegel, 2015 ; Siegel et al., 2012 ) and even mediate

 Fries, 2005 ) interactions in large-scale brain networks. Accordingly,

lectrophysiological studies in MS patients have revealed changes of

euronal coupling in specific frequency ranges ( Hardmeier et al., 2012 ;

choonheim et al., 2013 ; Sjøgård et al., 2021 ; Tewarie et al., 2013 ;

ewarie et al., 2014 ). While these studies have largely focused on phase-

oupling as a measure of functional connectivity, recent findings have

ighlighted amplitude-coupling as another mode of neuronal interac-

ions that may provide robust connectivity information non-redundant

o phase-coupling ( Brookes et al., 2012 ; Daffertshofer et al., 2018 ;

ipp et al., 2012 ; Mostame and Sadaghiani, 2020 ; Siems et al., 2016 ;

iems and Siegel, 2020 ; Sjøgård et al., 2021 ; Wens et al., 2014 ). Thus,

e employed our new analysis approach to resting-state MEG record-

ngs, first, to jointly identify features of cortical phase- and amplitude-

oupling that can dissociate MS patients from healthy controls, and sec-

nd, to investigate if these features differ between amplitude- and phase-

oupling. 

Our analysis approach identified a set of principle phase- and

mplitude-coupling modes that allowed to successfully classify (84%

orrect) RRMS patients and controls. Importantly, both coupling mea-

ures showed significant and non-redundant changes of neuronal cou-

ling over a broad range of frequencies and cortical networks. Our re-

ults highlight non-invasive electrophysiological coupling measures as

owerful new biomarkers of Multiple Sclerosis and provide a proof-of-

rinciple for a novel approach to aid the exploration of high-dimensional

oupling data. 

. Materials and methods 

.1. Subjects and dataset 

We analyzed MEG data from two datasets. The first dataset was

ecorded at the MEG-Center Tübingen and included eyes-open resting-

tate MEG measurements from 34 subjects. 17 of these subjects (8 fe-

ale, mean age ( ± std) 31.1 ± 9.6 years) were diagnosed with relapsing-

emitting MS (RRMS) and 17 subjects were healthy controls (9 female,

ean age ( ± std) 28.4 ± 4.2 years, p = 0.30). The patient group was

easured prior to the first application of Tecfidera (dimethyl fumarate;

ioGen Inc., Cambridge, MA, USA) with a median disease duration

f 1 month (0–3 years interquartile range, maximum 11 years). Pa-

ients had no or mild to moderate neurological impairment, which was

ssessed with the Expanded Disability Status Scale ( n = 16; median

DSS total = 1.5, range 0 to 3.5; Kurtzke, 1983 ) and the Multiple Sclerosis

unctional Composite ( n = 13; median MSFC totalz = − 1.8, range − 0.3 to

 3.3; Fischer et al., 1999 ). All participants gave written informed con-

ent in accord with the Declaration of Helsinki, and the study was ap-

roved by the ethics committee of the medical faculty of the University

f Tübingen. 

We collected 10 min of eyes-open resting-state MEG data per sub-

ect. The MEG was continuously recorded with a 275-channel whole-

ead system (Omega 2000, CTF Systems Inc., Port Coquitlam, Canada)

n a magnetically shielded room. The head position was tracked using

hree head localization coils fixated at the nasion and the left and right
2 
reauricular points. MEG signals were recorded with 2343.75 Hz sam-

ling frequency and down sampled to 1000 Hz offline. 

A T1-weighted sagittal MRI was obtained from each participant to

onstruct individual high-resolution head models (MPRAGE sequence,

E = 2.18 ms, TR = 2300 ms, TI = 1100 ms, flip angle = 9°, 192 slices,

oxel size = 1 × 1 × 1 mm). The subjects were scanned in a Siemens

AGNETOM Trio 3T scanner (Erlangen, Germany) with a 32-channel

ead coil. 

The second dataset included 95 subjects from the publicly avail-

ble human connectome project (HCP) S900 release ( Larson-Prior et al.,

013 ). Participants were healthy adults in the age range between 22 and

5 years (n 22–25 = 18, n 26–30 = 40, n 31–35 = 37). The HCP-sample in-

luded 45 females. The HCP-MEG data included three six-minute blocks

f eyes-open resting-state MEG with short breaks in between measure-

ents. Data were recorded with a whole-head Magnes 3600 scanner (4D

euroimaging, San Diego, CA, USA) situated in a magnetically shielded

oom ( Larson-Prior et al., 2013 ). Additionally, the HCP-subjects were

canned on a Siemens 3T Skyra to acquire structural T1-weighted mag-

etic resonance images (MRI) with 0.7 mm isotropic resolution ( Van Es-

en et al., 2013 ). The BTI/4D MEG system used in the HCP dataset is

 potential source for dissociations to the Tübingen dataset, which was

ecorded with a CTF MEG system. However, we did not find any sig-

ificant difference of the coupling structure (see below) between the

ealthy subjects measured with the two systems below 32 Hz (r att >

.95 & 0.90 for amplitude-, and phase-coupling, respectively; p r < 1,fdr 

 0.05). For higher frequencies ( > = 32 Hz) the correlation between

he datasets dropped to r = 0.26 and 0.70 for amplitude- and phase-

oupling, respectively, which can likely be attributed to stronger muscle

rtifact contamination of the HCP dataset (Fig. S1). However, impor-

antly, while the potentially weaker reduction of muscle artifacts in the

CP-preprocessing may in principle affect component selection, it can-

ot lead to false-positive components for classification of patients and

ontrol subjects. 

.2. Data preprocessing 

For the Tübingen-dataset, we first notch-filtered line noise at 50 Hz

nd at the first six harmonics (stop-band width: 1 Hz). Second, we vi-

ually inspected the data for muscle-, eyeblink-, and technical artifacts

SQUID-jumps). We rejected corresponding time intervals and malfunc-

ioning or noisy channels (mean: 1 channel; range: 0 to 3 channels).

hird, we high-pass filtered the data at 0.5 Hz with a 4th-order zero-

hase Butterworth filter and split the data into two frequency bands:

 low frequency band from 0.5 to 30 Hz and a high frequency band

ith frequencies above 30 Hz. For both frequency ranges, we sepa-

ately performed independent component analysis (ICA; Hyvärinen and

ja, 2000 ). We applied the fastica algorithm with stabilization, subse-

uent component selection (‘deflation’), ‘pow3’ non-linearity and 1000

terations per component. If the algorithm didn’t reach convergence

ithin 1000 iterations the component was recomputed up to 5 times.

he frequency-split approach takes advantage of the distinct spectral

rofile of different non-neuronal, physiological artifacts: Cardiovascular

ctivity, eye-blinks and eye-movements most prominently show low-

requency features, whereas muscle activity is prominent at high fre-

uencies ( Hipp and Siegel, 2013 ). For both frequency ranges, inde-

endent components were visually inspected and artifactual compo-

ents were rejected according to their topology, time course and spec-

rum ( Chaumon et al., 2015 ; Hipp and Siegel, 2013 ). For the Tübingen

ataset, from 100 extracted low-frequency components a median of 4

omponents was excluded (range controls = 3 to 11, range patients = 3 to

0). From 40 extracted high-frequency components a median of 13 com-

onents was excluded (range controls = 13 to 18, range patients = 8 to 21).

or both frequency ranges, there was no significant difference of the

umber of rejected components between the two groups (both p > 0.7).

fter artifact rejection, the sensor-level data from both frequency bands
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ere recombined. This recombined broad-band data was then used for

ll subsequent analyses. 

For the HCP-dataset we used the preprocessed data as provided by

he HCP pipeline ( Larson-Prior et al., 2013 ). This included removal of

oisy and malfunctioning channels, bad data segments and physiolog-

cal artifacts by the iterative application of temporal and spatial inde-

endent component analysis ( Larson-Prior et al., 2013 ; Mantini et al.,

011 ). 

.3. Physical forward model and source modeling 

MEG sensors were aligned to the individual anatomy using FieldTrip

 Oostenveld et al., 2010 ). We segmented the individual T1-weighted

mages and generated individual single shell boundary element method

BEM) head models. Based on these individual head models, we com-

uted the physical forward model ( Nolte, 2003 ) for 457 equally spaced

 ∼1.2 cm distance) source points spanning the cortex at 0.7 cm depth

elow the pial surface ( Hipp et al., 2011 ; Hipp and Siegel, 2015 ;

iems and Siegel, 2020 ). The source shell was generated in MNI-space

nd non-linearly transformed to individual headspace. We co-registered

he source coordinates, head model and MEG channels on the basis of

he three head localization coils. 

The sensor-level MEG data was projected to source space us-

ng frequency-domain linear beamforming (DICS; Gross et al., 2001 ;

an Veen et al., 1997 ). This spatial filtering approach reconstructs activ-

ty of the sources of interest with unit gain while maximally suppressing

ontributions from other sources. 

.4. Spectral analysis 

We generated time-frequency estimates of the time-domain MEG sig-

al using Morlet wavelets ( Goupillaud et al., 1984 ). The bandwidth of

he wavelets (1 spectral standard deviation) was set to 0.5 octaves with a

emporal step-size of half the temporal standard deviation. We derived

pectral estimates for 23 frequencies from 2.8 to 128 Hz in quarter-

ctave steps. 

.5. Neuronal coupling 

We estimated neuronal amplitude- and phase-coupling by means of

mplitude envelope correlations of orthogonalized signals ( Hipp et al.,

012 ) and the weighted phase lag index ( Vinck et al., 2011 ), respec-

ively. Importantly, both measures are insensitive to volume conduc-

ion and might relate to distinct functional mechanisms of cortical

etwork interactions ( Daffertshofer et al., 2018 ; Engel et al., 2013 ;

iegel et al., 2012 ; Siems and Siegel, 2020 ). For the application of

mplitude-coupling we used pairwise orthogonalization of the two com-

lex signals at each time-point ( Brookes et al., 2012 ; Hipp et al., 2012 )

efore correlating the log-transformed power envelopes. 

For both metrics all subjects and frequency bands, we generated full

nd symmetric correlation matrices. For further analyses, we vectorized

ll unique connections of these correlation matrices. We refer to the

esulting vectors as coupling profiles. 

.6. Direct comparison of coupling 

For every connection (n c = 104,196) in each frequency band

n f = 23), we tested for group differences in coupling strength (two-

ailed Mann-Whitney U-tests) and applied false-discovery rate correc-

ion ( Benjamini and Hochberg, 1995 ) for multiple-comparison correc-

ion within each frequency. Further, we tested which group was more

ikely to show stronger coupling in each frequency band by testing the

istribution of the sign of significant differences ( p < 0.05) against 0.5

sing a binomial test. In other words, we tested the Null-hypothesis of

he same probability of positive and negative signs. For the binominal

tatistic, we conservatively estimated the degrees of freedom at df = 40
3 
s the rank of the forward model, i.e., the maximum amount of inde-

endently separable sources ( Hipp and Siegel, 2015 ; Wens et al., 2015 ).

urthermore, we FDR-corrected the results of the binomial tests across

requencies. 

.7. Dimensionality reduction of coupling space 

In a first step, in the HCP dataset, for each frequency and coupling

easure, we applied PCA to the coupling profiles across HCP subjects

n hcp = 95) in order to identify components, i.e., networks of coupling

hat explain most variability across subjects. Next, we projected the cou-

ling profiles of the Tübingen patient and control subject dataset into

he PCA space. For each frequency and both coupling modes, we multi-

lied the z-scored coupling profiles of every subject with the component

igenvectors of the PCA. In each frequency band, we used the 30 prin-

ipal components with the highest eigenvalues, which resulted in 690

eature dimensions per coupling measure (coupling components). 

.8. Feature bagging and group classification 

In a second step, we applied bootstrap aggregating (feature bagging)

o identify the components that best separate between the two groups

 Fig. 2A ). We drew a random subset of features (n sub = 10) from all

380 features, classified the two groups using a support vector machine

lassifier with leave-one-out cross-validation, and repeated this proce-

ure (n draw 

= 2 × 10 7 ). As control analyses, we repeated the procedure

or n sub = 2, 3, 5, 20, with both 5- and 10-fold cross-validation and for

hree other classification algorithms (decision trees, linear discrimina-

ory analysis, naïve Bayes classifier). This procedure resulted in a distri-

ution of classification accuracies across random feature selections. We

efined the features that best separate between patients and controls

y applying a threshold at the 75-percentile of this distribution. If no

eature can classify between the two groups the probability of any fea-

ure to be in the subsets with the 25% highest accuracies will be equal.

owever, if features contain information to classify the two groups, this

robability will increase. Thus, we defined the probability of a feature

o be in the 25% subsets with the highest accuracies as its classifica-

ion score. As control analyses, we repeated the analyses for different

ccuracy thresholds: 66%, 90% and 98% percentile. 

Feature bagging is a central part of classic random forest classifica-

ion algorithms ( Breiman, 2001, 1996 ; Cutler et al., 2012 ). To elucidate

he relationship of the employed approach to a standard random forest

lgorithm we generated a random forest classifier with feature bagging

ithout replacement. We used 200 weak learners per learning cycle and

-fold cross validation and repeated the computation 100 times. Subse-

uently, we computed the permutation importance per component and

epetition. We compared the mean permutation importance over repeti-

ions to the classification scores. Furthermore, we compared the cortical

atterns of identified classifying components between the random forest

pproach and the proposed custom approach. 

.9. Statistical testing of classification scores 

We used permutation statistics to test the statistical significance of

very feature’s classification score, i.e., the likelihood of a given classifi-

ation score under the Null-hypothesis that groups cannot be classified

ased on this feature. A significant feature indicates a spatio-spectral

attern of cortical coupling that separates between patient and control

roups. 

For each permutation ( n = 1000), we randomly reassigned subjects

o one of the two groups, keeping the same ratio between groups and re-

eated our analysis. Importantly, for each permutation, we again drew

 draw 

= 2 × 10 7 feature bags per group permutation to account for the

andom separability of any group constellation. We then combined all

lassification scores (1000 permutations of 1380 feature-specific clas-

ification scores) to define one general, component-independent Null-
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e  
istribution and to assign p-values for each classification score. We

orrected these p-values with false-discovery rate correction across the

380 scores (FDR-correction; Benjamini and Hochberg, 1995 ). 

To test if groups could be significantly classified in general, we quan-

ified how likely it was to find the identified number of significant com-

onents under the Null-hypothesis that groups could not be classified.

e applied the same procedure as for the real data to every group per-

utation and quantified how many significant components we could

dentify ( p < 0.05, FDR-corrected). The resulting distribution across the

000 permutations served as the Null-distribution of significant compo-

ents. All permutations had less significant features than identified for

he real data (58 features). In fact, not more than one significant feature

 p < 0.05, FDR-corrected) was identified for any of the 1000 permuta-

ions. 

.10. Classification confidence 

We quantified classification confidence as a distance measure. For

ach subject i , we compared the Mahalanobis distance D mah of its feature

ector to the distribution of feature vectors for the patient and for the

ontrol group. We computed D mah of subject i: 

 𝑀𝑎ℎ,𝑖,𝑔 = ( 𝑓 𝑖 − 𝜇𝑔 ) ∗ 𝐶 

−1 
𝑔 

∗ ( 𝑓 𝑖 − 𝜇𝑔 ) ′

Here, f i describes the feature vector of each subject; μ and C describe

he group g mean and group member covariance, respectively. We ex-

luded the ith subject from the corresponding mean and covariance ma-

rix calculation. The exponential − 1 indicates matrix inverse and the ‘

perator indicates the transpose. We then defined classification confi-

ence as the difference between D Mah,i,con – D mah,i,r r ms . Thus, a positive

alue indicates that a subject is closer to the patient group mean than

o the control group mean and vice versa. 

.11. Spatial distribution of PCA components 

The component coefficients derived from the HCP-dataset contain

he spatial distribution of each principal component. However, the sign

f these weights is inherently ambiguous. We achieved sign consistency

cross components by sign flipping those components for which the

ean component scores within the patient group were smaller than in

he control group. Hence, a positive component coefficient indicates that

he coupling is relatively increased in patients whereas a negative coef-

cient indicates a coupling decrease. 

We visualized the spatial distribution of PCA components as the av-

rage of all normalized significant components within a frequency band

nd coupling measure: delta (2.8–3.4 Hz), theta (4–6.7 Hz), alpha (8–

3 Hz), beta (16–27 Hz), low gamma (32–54 Hz) and high gamma (64–

28 Hz). For the normalization, we divided each component by the ab-

olute 98-percentile across all its connections. 

.12. Unbiased accuracy estimation 

To estimate the unbiased accuracy with which any new subject can

e classified as patient or healthy control, we employed a second-level

eave-one-out cross-validation. Leaving out each subject at a time, we

pplied the complete analysis pipeline outlined above, defined features

paces, and classified the left out subject. 

We generated a continuous estimate of accuracy by computing the

istance of the left-out subject from the decision boundary. To compare

istances across different feature space realizations, i.e. left out sub-

ects, we defined distances in units of standard deviation. We divided

he distance of the left-out subject in each feature space by the standard

eviation of the distances to the decision boundary of all but the left-

ut subjects. The sign of the distance was set positive or negative if the

ubject was classified as a patient or healthy control, respectively. 
4 
Finally, we separately fit a Gaussian distribution to the patient ( N MS )

nd healthy control group ( N con ) distances. We derived the unbiased sen-

itivity, specificity and accuracy of classification from these two Gaus-

ians: 

ens itiv ity = ∫
+∞

0 
𝑁 rrms ∕ ∫

+∞

−∞
𝑁 rrms 

pecificity = ∫
0 

−∞
𝑁 con ∕ ∫

+∞

−∞
𝑁 con 

ccuracy = 

1 
𝑛 all 

(
𝑛 rrms ∗ sensitivity + 𝑛 con ∗ specificity 

)

here ∫ indicates the integral and the two Gaussians, N MS and N con , are

efined by the group specific mean and standard deviation. The group

izes were defined by n MS , n con and n all for the patient group, the control

roup and all subjects, respectively. 

. Results 

We compared brain-wide phase- and amplitude-coupling of fre-

uency specific neuronal activity between 17 patients diagnosed with

elapsing-remitting MS (RRMS) at an early disease stage (median

DSS = 1.5, range 0–3.5; Lublin and Reingold, 1996 ; Polman et al.,

011 ) and 17 healthy control subjects. 

Cortical phase- and amplitude-coupling was estimated from 10 min

f eyes-open resting-state MEG measurements. We reconstructed corti-

al activity from the MEG using DICS beamforming ( Gross et al., 2001 ;

an Veen et al., 1997 ) and quantified phase- and amplitude-coupling

sing the weighted phase-lag index ( Vinck et al., 2011 ) and power-

orrelations of orthogonalized signals ( Hipp et al., 2012 ), respectively.

oth measures are insensitive to volume conduction ( Brookes et al.,

012 ; Hipp et al., 2012 ; Vinck et al., 2011 ) and show strong intra-

nd inter-subject reliability ( Colclough et al., 2016 ; Hipp et al., 2012 ;

iems et al., 2016 ; Siems and Siegel, 2020 ; Wens et al., 2014 ). 

.1. Direct comparison of neuronal coupling 

As a first approach, we directly compared the connection- and

requency-wise coupling between patients and controls in a mass-

nivariate approach ( Fig. 1 ; n c = 104,196; n f = 23). While differences

etween groups peaked around 19 Hz and 45 Hz for amplitude- and

hase-coupling, respectively ( Fig. 1 , purple lines), these effects were not

tatistically significant when applying false discovery rate-correction for

he number of connections tested ( Fig. 1 , green lines). This highlights

ow the high dimensionality of brain-wide coupling impedes a direct

tatistical comparison. 

Nevertheless, the univariate comparison revealed an intriguing pat-

ern of the sign of differences between groups ( Fig. 1 , red and blue lines).

f there was no difference between groups, the sign of randomly signif-

cant differences in coupling (type I errors) would be equally proba-

le in both directions. However, the observed differences deviated from

his distribution for both coupling measures ( Fig. 1 , gray bars). For

mplitude-coupling, patients showed decreased coupling in the beta fre-

uency range (16–22 Hz) and increased coupling in the delta (2–4 Hz)

nd gamma (32–106 Hz) frequency ranges. Phase-coupling in patients

as increased mainly in the low gamma frequency range (38–54 Hz). 

In summary, although the vast number of connections impaired the

irect comparison of coupling on the connection-level, the asymmetry of

bserved differences suggested that there are systematic and frequency-

pecific differences of coupling between RRMS patients and healthy con-

rol subjects. 

.2. Group classification based on principal coupling components 

To overcome the limitations of the connection-wise analysis and to

fficiently cope with the high dimensionality of the brain-wide coupling
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Fig. 1. Connection-wise comparison of neuronal coupling between MS patients 

and control subjects. ( A ) Amplitude-coupling (orthogonalized amplitude cor- 

relations) ( B ) Phase-coupling (weighted phase-lag index). In both panels, the 

purple line indicates the ratio of significantly different connections ( p < 0.05 

uncorrected) and the green line indicates this ratio after false-discovery rate cor- 

rection. The red and the blue lines show the ratio of connections with increased 

and decreased coupling in the patient group (rrms), respectively ( p < 0.05, un- 

corrected). The gray bars display carrier frequencies with a significantly directed 

ratio of effects ( p < 0.05, FDR-corrected), i.e., more connections with signifi- 

cantly increased or decreased coupling. The black dashed line indicates 0.05. 
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pace, we next devised a multistage machine-learning approach ( Fig. 2 ).

n brief, we first identified a subspace of principle coupling components

n an independent MEG dataset, then projected the patient and control

ata into this coupling space, and finally employed a bootstrapped clas-
5 
ification approach to identify significant coupling differences between

roups. 

To efficiently reduce the dimensionality of the coupling space, we

pplied principal component analysis (PCA) to the z-scored brain-wide

hase- and amplitude-coupling of 95 subjects from the human connec-

ome project S900 MEG dataset ( Larson-Prior et al., 2013 ). For each fre-

uency and both coupling modes, we extracted the 30 principal coupling

omponents that explained most variability of coupling across subjects

largest eigenvalues). Importantly, the identification of principal cou-

ling components in an independent and public dataset ensured, that

his identification itself was not conflated by any potential variability

etween patient and control groups and that the identified components

ould be readily applied to other research questions independent of the

urrent dataset. We next projected the coupling profiles of patients and

ontrol subjects into the principal coupling space, which resulted in a

ore than 3000-fold dimensionality reduction to a total of 1380 cou-

ling components. 

We next employed multivariate classification (support vector ma-

hine, SVM) to identify significant differences of coupling between

roups in the reduced coupling space. Because likely not all compo-

ents are informative, classification accuracy suffers when utilizing all

omponents at once ( Pappu and Pardalos, 2014 ). Running the classifica-

ion on the full feature space (5-fold cross-validated) could only achieve

lassification accuracies around chance-level: 42%, 45%, 52% and 60%

ccuracy for SVM, decision trees, LDA and naïve Bayes classifier, re-

pectively. Similarly, by using every component for itself, generic inter-

ctions between components and frequencies might be missed. 

We therefore employed a bootstrap approach (feature bagging;

reiman, 1996 ) to identify relevant components. 20-million times, we

icked a random subset of 10 coupling components (without replace-

ent) and applied SVM to classify patients and controls with leave-one-

ut cross-validation ( Fig. 2B ). For each component, we then computed a

lassification score as its likelihood to contribute to component-subsets

ith classification accuracies in the top quartile ( Fig. 3A ). For each com-

onent, we statistically tested its classification score using a permutation

pproach ( p < 0.05, FDR-corrected). This procedure allowed us to iden-

ify 58 coupling components that significantly contributed to the classi-

cation of patient and control groups ( Fig. 3A , p < 0.05 FDR-corrected).

4 and 24 of these components were specific to amplitude-coupling and

hase-coupling, respectively. 
Fig. 2. Analysis approach. For each sub- 

ject, coupling measure and frequency we 

computed complete cortico-cortical corre- 

lation matrices and vectorized and z-scored 

the upper triangle. We conducted PCA on 

the coupling vectors of the HCP data and 

projected the coupling vectors of RRMS- 

patients and control subjects into the re- 

sulting space of principal coupling com- 

ponents. We applied bootstrap aggregating 

(feature bagging) to identify coupling com- 

ponents that best classify between RRMS- 

patients and control subjects. We drew ran- 

dom subsets of 10 components (bags) and, 

for each bag, classified (SVM) between 

groups with leave-one-out cross-validation. 

We employed a permutation statistic to se- 

lect components that were more often in 

the top quartile of best classifying bags than 

expected by chance (see methods) ( B ) Dis- 

tribution of classification accuracies across 

all 2 × 10 7 bags for the original data (pur- 

ple) and for randomly permuted group as- 

signments of subjects (yellow). 
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Fig. 3. Selection of principal coupling components by classification scores. Classification scores were defined as the likelihood of each component to contribute to 

bags with classification accuracies in the top quartile of all 2 × 10 7 bags. ( A ) Classification scores for all 30 amplitude- (purple) and phase-coupling (green) components 

of each carrier frequency ordered by the variance explained within each frequency. The components and eigenvalues were derived from the HCP-dataset. Dashed 

lines divide the carrier frequencies. Purple and green squares indicate significant classification scores for amplitude- and phase-coupling components, respectively 

( p < 0.05, FDR-corrected) ( B ) Maximum classification scores per carrier frequency for amplitude- (purple) and phase-coupling (green). 
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The employed permutation statistic also allowed us to test whether

verall we could significantly classify between the two groups. We quan-

ified how likely it was to find the identified number of significant com-

onents under the Null-hypothesis that groups could not be classified.

e found that the amount of identified features was indeed highly sig-

ificant ( p < 0.001). Thus, RRMS patients could be significantly classi-

ed from healthy control subjects based on a specific set of principal

hase- and amplitude-coupling components. 

These results were robust across a broad range of parameter choices

nd control analyses. First, we repeated the analysis separately for

mplitude- and phase-coupling components. The classification scores

ere similar and well correlated to those obtained when combin-

ng amplitude- and phase-coupling components (amplitude-coupling

 = 0.79; phase-coupling: r = 0.65). We further repeated the analyses for

ifferent bag sizes (2, 3, 5, 20), accuracy thresholds (66%, 90%, 98%),

lassification algorithms (naïve Bayes, decision tree and linear discrim-

natory analysis, see also Fig. S2) and with both 5- and 10-fold cross-

alidation. The results were again very similar with high correlations

f classification scores between approaches (bag size: 0.92 < r < 0.96;

ccuracy threshold: 0.81 < r < 0.99; algorithm: 0.65 < r < 0.91; cross-

alidation folds: 0.93 < r < 0.98; all p < 0.05, FDR-corrected across all

omparisons). Further, we found that classification scores significantly

orrelated with the permutation importance computed using a random

orest classifier ( r = 0.35, p FDR < 0.05; Fig. S3). 

.3. Spectral and cortical distribution of altered coupling 

We further examined the spectral and cortical distribution of cou-

ling components that dissociated RRMS patients from healthy controls.

or amplitude-coupling, these components were spectrally specific to

ow frequencies ( < 5 Hz), the beta frequency range (19 Hz) and the

amma frequency range ( > 40 Hz; Fig. 3B ). For phase-coupling, the clas-

ification score distribution showed several peaks in the theta (4 Hz), al-

ha (8 Hz), beta (13–16 Hz and 22–26 Hz) and gamma bands ( > 45 Hz;

ig. 3B ). 

To visualize the brain regions whose coupling dissociated patients

rom control, we first averaged the absolute coupling coefficients of

ll significant components for each brain region for frequencies below

nd above 35 Hz and both coupling measures ( Fig. 4A ). We split these

requency ranges because at frequencies above 35 Hz coupling esti-

ated from MEG strongly resembles residual muscle activity ( Hipp and

iegel, 2013 ; Siems et al., 2016 ). 
6 
We found that, for frequencies below 35 Hz, RRMS affected intra-

nd interhemispheric amplitude-coupling of the medial prefrontal, dor-

olateral prefrontal, pericentral, lateral parietal and extrastriate visual

ortex ( Fig. 4A ). Phase-coupling differences in this frequency range

etween patients and controls peaked in bilateral pericentral, inferior

emporal and medial occipito-parietal areas, mainly with altered intra-

emispheric coupling. For high frequencies above 35 Hz, for both cou-

ling modes, we found differences between patients and controls for

reas typically related to residual muscle-activity, that is bilateral ante-

ior temporal and ventral frontal regions ( Fig. 4A ). These results largely

verlapped with the networks found using a random forest classifier

Fig. S3). For low frequency components, the cortical patterns of the

wo approaches significantly correlated with r = 0.44 and r = 0.71

or amplitude- and phase-coupling, respectively. For frequencies above

5 Hz correlations were larger than 0.9 (all p < 0.05, FDR-corrected). 

We next resolved the signed changes of coupling in patients within

ach frequency band ( Fig. 4B ). For amplitude-coupling, patients showed

nhanced low-frequency coupling in lateral parietal and extrastriate vi-

ual areas in the delta band (2.8–3.4 Hz) and in medial and ventrolat-

ral prefrontal cortex in the theta band (4–6.7 Hz). In the beta band

16–27 Hz), patients showed reduced amplitude-coupling in pericentral

nd visual areas. Frequencies above 32 Hz showed reduced amplitude-

oupling in often muscle confounded anterior temporal and ventral pre-

rontal regions. Phase-coupling showed a rich pattern of changes in

S patients with typically bilateral increases and decreases of coupling

ithin the same frequency range. Patients showed increased phase-

oupling in medial prefrontal (theta, 4–6.7 Hz), lateral prefrontal (theta,

lpha, beta & low gamma 8–54 Hz), as well as pericentral and lat-

ral parietal areas (beta & gamma, 16–128 Hz). Phase-coupling was de-

reased in temporal (theta 4–6.7 Hz), medial and lateral parietal (alpha

–13 Hz) as well anterior temporal areas (beta & gamma 16–128 Hz). 

In summary, RRMS patients showed both, increased and decreased

hase- and amplitude-coupling across a broad range of frequencies and

ortical regions with highly frequency-specific changes. 

.4. Altered coupling predicts disease severity 

If the identified changes of neuronal coupling in MS patients re-

ected disease-specific mechanisms, they may predict disease severity.

ur results supported this hypothesis. We tested if, across patients, the

onfidence of classification based on neuronal coupling, i.e. how similar

oupling was to that of patients as compared to controls, was correlated

ith two clinical measures of disease strength: the Expanded Disability
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Fig. 4. Cortical distribution of classifying coupling components. ( A ) Normalized average absolute strength of significantly classifying components for amplitude- 

(left) and phase-coupling (right), and for frequencies below (top) and above (bottom) 35 Hz. Colors are scaled between 0 and maximum for each panel. Circular 

line plots indicate connections with best classification between patients and controls (random subset of best 10%). Colors along the circle indicate cortical location, 

as shown on the right. ( B ) Normalized average strength of significantly classifying components for individual frequency bands and both coupling modes. Colors are 

scaled between the positive and negative absolute 95-percentile for each panel. Warm and cold colors indicate an increased and decreased coupling in patients, 

respectively. Circular line plots as in (A). 
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tatus Scale ( n = 16; Kurtzke, 1983 ) and the Multiple Sclerosis Func-

ional Composite ( n = 13; Fischer et al., 1999 ). We found that indeed

oth clinical scores were significantly correlated with classification con-

dence ( Fig. 5 ) (EDSS: r = 0.45, p = 0.04, FDR-corrected; MSFC: r = 0.49,

 = 0.02, FDR-corrected). Thus, stronger coupling changes predicted a

ore severe disease state. 

.5. Classification accuracy 

In a final set of analyses, we quantitatively addressed the question

ow well RRMS patients could be classified based on the cortical cou-

ling assessed with MEG. Importantly, the classification accuracy of an

ndividual subject based on the principal coupling components identi-

ed including this subject is positively biased. Thus, to derive an un-

iased estimate of classification accuracy for a novel MEG dataset, we

erformed a cross-validation of the entire analysis pipeline leaving out

nd classifying each subject at a time. We performed this analysis for

ll combined coupling components (n comp = 1380) as well as sepa-
7 
ately for the two coupling modes (n comp = 690) and frequency ranges

n comp,low 

= 480 & n comp,high = 210). 

The unbiased classification accuracy using all coupling components

as 84% (chance level: 50%) and nominally higher than the accuracy

btained using any coupling mode or frequency range alone ( Fig. 6A ).

he independent classification accuracy for amplitude-coupling (83%)

as higher than for phase-coupling (74%). Furthermore, we found that

he distance to the classification boundary was only weakly correlated

etween amplitude- and phase-coupling ( r = 0.21) ( Fig. 6B ). In line

ith the enhanced accuracy when combining both coupling modes, this

s supporting evidence for non-redundant information of phase- and

mplitude-coupling. 

. Discussion 

We devised and successfully applied a novel multistage approach to

nalyze high-dimensional neuronal coupling data. The approach com-

ines dimensionality reduction, bootstrap aggregating and multivariate
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Fig. 5. Correlations between classification confidence and behavioral scores of 

disease severity. Correlation between classification confidence and ( A ) the EDSS 

( n = 16; Expanded Disability Status Scale) and ( B ) the MSFC-scores ( n = 13; Mul- 

tiple Sclerosis Functional Composite). The y-axes indicate the disease severity 

such that an increasing value corresponds to a more severe disease state. For 

MSFC we mirrored the values into the positive range to fit this notation (orig- 

inal values MSFC z = − 0.3–3.3). Shaded areas are 95% confidence intervals of 

the linear model parameters. 

c  

p  

w  

c  

a  

p  

w  

b  

d  

g  

m  

a  

s  

M

4

 

c  

w  

r  

s  

s  

e  

m

 

g  

p  

c  

c  

a  

c  

p  

s  

t  

w  

t  

b  

d  

m  

H  

e  

c  

f  

w

 

y  

f  

t  

t  

S  

y  

a

 

b  

s  

b  

u  

v  

(  

I  

c  

s  

t

 

s  

d  

F

D

a

c

lassification. Applying this approach to a small dataset of 17 RRMS

atients and 17 healthy control subjects, we identified several brain-

ide principal phase- and amplitude-coupling components that signifi-

antly dissociated between the groups with an overall accuracy of 84%

nd with classification confidence predicting disease severity. This study

rovides, to our knowledge, the first systematic comparison of brain-

ide phase- and amplitude-coupling in Multiple Sclerosis patients. For

oth coupling modes, in RRMS patients we found both, increased and

ecreased coupling across a broad range of frequencies and cortical re-

ions. At higher frequencies, effects at least partially reflected changes in

uscle activity ( Hipp and Siegel, 2013 ; Siems et al., 2016 ). In summary,

 novel multistage classification approach revealed systematic, wide-

pread and non-redundant changes of phase- and amplitude-coupling in

ultiple Sclerosis. 

.1. Classification approach 

The employed unsupervised multivariate classification approach

ombines several key methodological advantages. First, all analyses

ere carried out on reconstructed cortical activity, rather than on the

aw MEG-signals. This allowed to align subjects and enhanced the

ignal-to-noise ratio by rejecting non-neuronal activity and focusing on

ignals of specific neuronal origin ( Hipp and Siegel, 2013 ; Van Veen
ig. 6. Classification accuracy. ( A ) Distance of every subject from the decision bou

istances are normalized by the standard deviation across all subjects within each cr

nd blue for controls. Frequencies are split at 35 Hz (low vs. high). ( B ) Each subjects’ 

omponents. AC (amplitude-coupling); PC (phase-coupling). 

8 
t al., 1997 ). Furthermore, we employed phase- and amplitude-coupling

easures that rejected spurious coupling due to field spread. 

Second, we combined dimensionality reduction and bootstrap ag-

regating to classify between groups in a very high-dimensional datas-

ace. Critically, the dimensionality reduction was based on a large and

ompletely independent dataset. Thus, the identified principal coupling

omponents are reflecting universal characteristics of cortical coupling

cross human subjects independent from the variance between the two

ompared groups. In turn, the identified components can be readily ap-

lied to any new dataset and question at hand. We employed a boot-

trap approach (feature bagging; Breiman, 1996 ; Ho, 1998 ) to iden-

ify several relevant dimensions in the reduced dataspace. The results

ere similar across a broad range of bootstrap parameters (bag size,

hreshold) and classification algorithms, supporting the robustness and

road applicability of this approach. The presented method allows to

irectly integrate further classification methods. Multivariate distance

easures such as cross-validated Mahalanobis distance ( Allefeld and

aynes, 2014 ) and multivariate regression analyses are other possible

xtensions of the presented pipeline. With feature bagging as a central

omponent, the employed approach bears similarity to classic random

orest classifiers. Indeed, we found that the key results were compatible

ith those of a standard random forest algorithm. 

Third, we employed cross-validation at two critical stages of the anal-

sis pipeline. First, we cross-validated the classification between groups

or every bootstrap aggregate of coupling components and combined

his permutation statistics. This efficiently counteracted overfitting for

he identification of classifying coupling components within our dataset.

econd, we cross-validated the classification accuracy of the entire anal-

sis pipeline, which ensured an unbiased estimate of the classification

ccuracy for the present datasets. 

Overall, high dimensional feature spaces are a common problem in

rain-connectivity analyses and biomedical research in general. Clas-

ification of groups of samples on the entire space is often not feasi-

le because of uninformative dimensions and classification on individ-

al dimensions may be computationally impractical, might miss multi-

ariate interactions, and is difficult to control for multiple comparisons

 Hipp and Siegel, 2015 ; Pappu and Pardalos, 2014 ; Wang et al., 2018 ).

n the present case, this is well illustrated by the failure to detect signifi-

ant coupling changes in a direct connection-level comparison. In these

ituations, the analyses approach employed here provides a flexible tool

hat can be readily adapted to explore a high-dimensional space. 

Despite these benefits and the validity of the present approach, it

hould be noted that the comparatively small sample-size of the present

ataset ( n = 34) limits generalizability. External validation within a
ndary (classification confidence) and Gaussian fits of the group distributions. 

oss-validation fold. The circle color indicates the group; red for RRMS-patients 

distance from the classification boundary for all amplitude- and phase-coupling 
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arger and independent sample is necessary to rule out an impact of

ataset-specific trends on the present results, to further improve the pa-

ameters of the analysis pipeline, to identify further disease specific fea-

ures, and to improve generalizability to heterogenous cohorts. 

.2. Wide-spread bidirectional changes of cortical coupling 

Our results provide new insights into the spatial and spectral dis-

ribution of cortical coupling changes during RRMS. We found al-

ered coupling across the entire investigated frequency range (2.8 to

28 Hz). This adds to a growing but heterogenous body of studies

hat have identified MS-related changes of rhythmic neural activity or

oupling across various frequency bands ( Cover et al., 2006 ; Figueroa-

argas et al., 2020 ; Hardmeier et al., 2012 ; Schoonheim et al., 2015,

013 ; Schoonhoven et al., 2019 ; Tewarie et al., 2014 a; Tewarie et al.,

013 ; Van Schependom et al., 2014 ). For phase-coupling, our approach

evealed both increases and decreases within the same frequency range.

his may have contributed to the heterogeneity of previous findings and

ighlights the advantage of separating cortical networks at the source-

evel. 

Rhythmic coupling at different frequencies reflects interactions in

pecific neuronal micro- and macro-circuits ( Donner and Siegel, 2011 ;

iegel et al., 2012 ). The spectrally widespread nature of our findings

uggests that MS leads to alterations across many different circuit inter-

ctions. This may entail not only local and large-scale cortico-cortical

nteractions, but also cortico-subcortical interactions. For example, the

ltered phase-coupling in the alpha frequency range found here may

eflect altered cortico-thalamic interactions associated with MS-related

halamic atrophy ( Schoonhoven et al., 2019 ; Tewarie et al., 2013 ). 

The observed broad spatial distribution of altered coupling across

he cortex accords well with its broad spectral distribution. Changes

nvolved both, local and large-scale coupling. In general, the affected

ortical networks resembled the known association with specific fre-

uency ranges, such as altered theta- or beta- coupling in midfrontal

nd sensorimotor regions, respectively. This suggests that RRMS al-

ers the strength of interactions in common brain networks associated

ith specific frequencies. It remains to be determined, to what extent

lso the frequency of these interactions is affected ( Schoonhoven et al.,

019 ). 

At frequencies above 35 Hz, RRMS patients showed decreased fron-

otemporal coupling, which well resembled the reported distribution

f residual muscle activity in EEG and MEG ( Hipp and Siegel, 2013 ;

iems et al., 2016 ). Thus, the decreased high-frequency coupling may

e due to decreased muscle activity, which may in turn result from both,

he disease itself as well as from motivational differences between pa-

ients and control subjects. 

Motivational or cognitive differences may generally contribute to

lassification results between patient and control groups. In this con-

ext, the finding that classification confidence predicts disease severity

ithin the patient group is particularly important. This suggests that

he identified changes indeed reflect disease specific effects rather than

eneral motivational differences between patient and control groups. 

Several different mechanisms may contribute to such disease specific

hanges. On the one hand, lesions of white-matter tracts may directly

ause a reduced coupling of the connected neuronal populations. On

he other hand, such reduced anatomical connectivity and functional

oupling may induce a number of indirect effects. For example, the de-

oupled populations may be part of a larger neuronal network. Local de-

oupling in this network may lead to a global decrease of coupling, com-

ensatory enhancement of coupling or a shift of the network dynamics.

imilarly, changes within one network may again lead to both, decreases

s well as increases of coupling in other brain networks ( Fornito et al.,

015 ; Helekar et al., 2010 ; Heuvel and Sporns, 2019 ; Schoonheim et al.,

015 ; Stam, 2014 ). Importantly, all these changes could span a broad

ange of temporal-scales, which may even lead to opposite immediate

nd long-term effects of the disease. 
9 
The interplay of all these mechanisms may explain the wide-spread,

omplex and often bi-directional pattern of coupling changes observed

ere. The present results set the stage for future studies to disentangle

he different mechanisms underlying these changes. For this, longitu-

inal investigations will be particularly important ( Schoonheim et al.,

015 ). 

.3. Coupling mode specific changes 

Amplitude correlation of orthogonalized signals has recently been

ntroduced as a robust and spectrally specific marker for cortical cou-

ling ( Hipp et al., 2012 ; Siems et al., 2016 ; Siems and Siegel, 2020 ).

onsistent with other recent evidence ( Sjøgård et al., 2021 ), our re-

ults show that cortical amplitude-coupling is systematically altered in

RMS patients already at an early disease stage. Moreover, our findings

ncover markedly distinct changes for phase- and amplitude-coupling.

here were more coupling components that dissociated the groups and

igher classification accuracy for amplitude-coupling than for phase-

oupling (amplitude/phase-coupling: 34/24 components; 83/74% ac-

uracy). This suggests that coupling changes are more robust for

mplitude-coupling. 

Furthermore, while phase-coupling showed effects in all but the

elta-band, amplitude-coupling was altered in all but the alpha-band.

he effects were also spatially dissociated. Below 35 Hz, amplitude-

oupling showed strongest changes in medial and lateral prefrontal cor-

ex as well as in pericentral and medial parietal areas, while phase-

oupling showed strongest effects in pericentral, medial occipitoparietal

nd inferior temporal cortex. Additionally, while amplitude-coupling

howed either consistent increases or decreases of coupling within each

and, phase-coupling showed bidirectional effects within each band. For

requencies above 35 Hz, amplitude-coupling showed higher sensitiv-

ty to residual muscle activity. Finally, we found that the two coupling

odes showed different sensitivities to different subgroups of subjects. 

Overall, our results show that phase- and amplitude-coupling are

ensitive to at least partially distinct changes of cortical coupling in MS.

ccordingly, while both coupling modes could independently dissoci-

te patients from healthy controls, the combination of coupling modes

ncreased classification accuracy. Our findings suggest that amplitude-

oupling provides a robust biomarker of changes in large-scale network

ynamics that may be synergistically combined with phase-coupling

easures. Adding other features of population activity could further

mprove classification performance. In particular, source-level power

ay provide additional information. Further studies are required to

est if power in specific frequency bands and cortical regions shares

ariance with the identified diagnostic connectivity structure. This may

e because of power directly affecting connectivity as well as because

f signal-to-noise ratio fluctuations ( Pesaran et al., 2018 ; Siems and

iegel, 2020 ). 

In sum, the observed differences between coupling modes add to

onverging evidence that at least partially distinct neuronal mecha-

isms underlie amplitude and phase coupling ( Daffertshofer et al., 2018 ;

ngel et al., 2013 ; Siegel et al., 2012 ; Siems and Siegel, 2020 ). 

.4. Summary and conclusions 

In summary, we devised a new multistage analysis approach that

ombines dimensionality reduction and bootstrapped multivariate clas-

ification to identify disease-related neuronal coupling changes. Our ap-

roach can be readily adapted to other scientific questions, and thus,

olds potential for the comparison of experimental populations or con-

itions in high-dimensional data spaces. 

Explorative application of our approach on a comparatively small

ample of patients ( n = 17) and healthy controls ( n = 17) uncovered sys-

ematic changes of large-scale cortical phase- and amplitude-coupling

t an early disease stage of Multiple Sclerosis. Changes were coupling-

ode specific and included decreases as well as increases across wide-
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pread frequency ranges and cortical networks. Our results highlight the

otential of non-invasive measures of neuronal phase- and amplitude-

oupling as powerful biomarkers for brain-network disorders. 
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