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Significance

Speech research is largely  
bound to the study of humans 
and, thus, suffers from 
methodological limitations. 
Therefore, key mechanisms of 
speech production remain 
unclear. One central question is 
whether neural representations 
of speech content and motor 
production can be dissociated. 
We addressed this with an 
innovative paradigm  
where we combined 
magnetoencephalography, 
advanced multivariate pattern 
analysis, and a rule-based 
vocalization task. We could 
dissociate neural representations 
of content and production and 
further describe their temporal 
and spatial dynamics. Our results 
suggest that content has an 
abstract representation that 
allows to generalize across 
different production forms. With 
this study, we answer some 
essential questions of speech 
research and provide a fruitful 
framework for further 
noninvasive research.
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Speech, as the spoken form of language, is fundamental for human communication. 
The phenomenon of covert inner speech implies functional independence of speech 
content and motor production. However, it remains unclear how a flexible mapping 
between speech content and production is achieved on the neural level. To address 
this, we recorded magnetoencephalography in humans performing a rule-based vocal-
ization task. On each trial, vocalization content (one of two vowels) and production 
form (overt or covert) were instructed independently. Using multivariate pattern 
analysis, we found robust neural information about vocalization content and produc-
tion, mostly originating from speech areas of the left hemisphere. Production signals 
dynamically transformed upon presentation of the content cue, whereas content 
signals remained largely stable throughout the trial. In sum, our results show disso-
ciable neural representations of vocalization content and production in the human 
brain and provide insights into the neural dynamics underlying human vocalization.

human speech | vocalization | MEG | MVPA | neural information

Vocal behavior is an essential component of human communication. Particularly speech, 
the spoken form of language, is a highly sophisticated skill exclusive to humans. Thereby, 
we can encode information not only in sound (overt speech) but also in thought (covert 
speech). These different speech forms imply functional independence of speech content 
and motor production. However, it remains an open question how content and production 
are represented neuronally and how the brain achieves a flexible mapping between the 
two.

In speech, two levels need to be distinguished. The lexical level, which refers to entire 
words, and the sublexical level, which refers to parts of words, such as phonemes (single 
vowel or consonant) or syllables (more than one vowel or consonant) (1). On both levels, 
speech engages a broad cortical network comprising the primary motor cortex (M1), 
premotor and supplementary motor cortices (PMC and SMA), as well as sensory and 
auditory cortices (2–8). Compared to phonemes, more complex sublexical speech leads 
to stronger activation in parts of the network (8), whereas lexical speech recruits additional 
areas for high-level speech processes like word selection and combination (6, 9, 10).

Several findings suggest that there is a neural representation of speech content which 
is to some degree independent of its motor production. This independence is intuitive on 
the lexical level. Indeed, on the lexical level, overt and covert speech were found to share 
a common cerebral network with similar activation patterns (11–17), which differ pri-
marily in activation magnitudes due to a different degree of executive motor control  
(15, 18). Furthermore, Broca’s area was found to act as a supramodal hub, exhibiting 
language-specific activation independent of the production form (19).

The motor-independent representation of speech content is less intuitive on the sub-
lexical level, where content may be expected to be more tightly bound to motor pro-
duction. Still, initial evidence also suggests production-independent representations of 
sublexical entities like syllables and phonemes. Efference copies in overt and covert 
speech were found to have similar patterns not only on the lexical but also on the sub-
lexical syllable level, except for M1 recruitment exclusive to overt speech (20–23). 
Furthermore, specifically on the syllable level, covert speech was found to yield articu-
latory representations in premotor regions, as well as acoustic representations in sensory 
and auditory cortices similar to overt speech (24). On the phoneme level, evidence 
remains sparse as most studies have been related to motor production (25–28) and 
efference copies were so far only described in overt speech (29). Yet, indirect evidence 
from phoneme-related speech errors in covert speech suggests a motor-independent 
phoneme representation (30).

In sum, past work suggests that neural activity underlying lexical and sublexical vocal-
izations represents both speech content and motor production. However, the representa-
tional overlap of content and motor representations and to what extent it is possible to 
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dissociate these aspects remain unclear. Furthermore, the dynamic 
interplay between emerging representations of content and motor 
production is not known, as most previous studies used neural 
data with inherently poor temporal resolution. These questions 
are particularly open on the phoneme level, where direct neuronal 
evidence is missing.

To address these questions, here we aimed, first, to independently 
manipulate and decode neuronal content and motor components 
of human phoneme vocalization and, second, to investigate their 
dynamic interplay across time. We recorded magnetoencephalog-
raphy (MEG) while subjects performed a rule-based vocalization 
task dissociating the content and motor aspects of sublexical 
speech. Content (one of two vowels) and production (overt or 
covert) were instructed sequentially and in random order. 
Multivariate pattern analysis (MVPA) of time-resolved MEG data 
allowed us to characterize the format, overlap, and temporal 
dynamics of neural content and production representations.

With this approach, we were able to read out content and motor 
information several seconds before speech onset. The strength of 
neural information correlated with the degree of motor involve-
ment. At the beginning of the trial, when only one variable was 
known, the isolated representations of content and production 
were similar. The production representation transformed once the 
content was known, whereas the content representation remained 
stable until the onset of vocalization.

Results

The Components of Vocalization Can Be Decoded Independently. 
We recorded MEG while subjects performed a rule-based 
vocalization task. Participants had to overtly vocalize or covertly 
imagine the vocalization of two different vowels. During each 
trial, content (/u/ / /ə/) and production (vocalized/imagined) were 
instructed sequentially with visual cues (Fig. 1A). Each cue lasted 
100 ms and was followed by a 2-s delay. At the end of the trial, 
a brief dimming of the fixation point served as a go cue for the 
onset of vocalization or imagination. The order of instruction was 
randomized, as was the assignment of the instructed content or 
production to the visual cues (Fig. 1B). Participants performed 

the correct production type (vocalized vs. imagined) in 97.98% of 
the trials. In case of vocalized trials, the correct vowel (/u/ vs. /ə/) 
was performed in 100% of the trials. We checked vocalized trials 
for their onset latency (possible for 37 sessions). In 98.48% of the 
trials, the vocal onset was after the go cue, as instructed. The mean 
vocal latency of these trials was 0.58 s (±0.12 SD).

For each subject and recording session, we computed neural infor-
mation about content and production. We applied cross-validated 
multivariate analysis of variance (cvMANOVA) on preprocessed 
single-trial MEG data from all sensors (see Methods; see SI Appendix, 
Fig. S1 for example single-trial data) (31, 32). The resulting measure 
of neural information can be interpreted analogously to classifier per-
formance from multivariate decoding analyses. To enable robust statis-
tical tests, we averaged information in the time windows between cues 
1 and 2 (delay 1), as well as between cue 2 and the go cue (delay 2).

We observed significant neural information about both varia-
bles (Fig. 2 and SI Appendix, Fig. S2 with individual data points). 
For both orders of cue presentation, we found information about 
the variables shortly after their respective instruction. When con-
tent was instructed first, there was significant content information 
in delay 1 (P = 0.003; corrected) and significant information about 
content and production in delay 2 (content: P = 3.4 × 10−4, pro-
duction: P = 1.6 × 10−9; corrected). Conversely, when production 
was instructed first, content information was only present in delay 
2, whereas production information was highly significant in both 
delays (content: pdel2 = 7.8 × 10−5; production: pdel1 = 2.8 × 10−6, 
pdel2 = 8.5 × 10−9; corrected). Thus, both the content of a vocali-
zation and its production form were represented neuronally, sev-
eral seconds before the actual execution.

The Components of Vocalization Are Modulated by Effort. 
Both experimental dimensions entailed differences in motor 
effort. Imagined vowels lacked actual vocalization, just as /ə/, 
as a nonarticulated vowel, lacked the strong articulation of /u/. 
Therefore, we wanted to investigate whether the neural information 
about content was equally strong for both production types and 
whether the neural information about production type was identical 
for both vowels. To test this, we decoded content separately for 
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Fig.  1. Rule-based vocalization task. Participants imagined or vocalized 
different contents (phonemes /u/ and /ə/). (A) Production and the content 
were instructed successively with visual cues, according to the respective rule 
of the trial block. (B) Rules for four trial blocks per recording session. In two 
blocks, the content was instructed first; in the other two blocks, the production 
was instructed first.

0

1

0 2 4

0

1

1 2

**

***

*

Content Production

DelayTime (s)

N
eu
ra
li
nf
or
m
at
io
n
(D
)

N
eu
ra
l i
nf
or
m
at
io
n
(D
)

Content first

Production firstB

Content Production

Go

A

Production Content Go

Delay 1 Delay 2

Fig. 2. Neural information about content and production. (A) Information 
in trials with content instructed first. (B) Information in trials with production 
instructed first. Shaded regions and error bars indicate SEM. Bar plots show 
average information in delays 1 and 2. Asterisks indicate significance (n = 24, 
P < 0.05 corrected; t test, one tailed).
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both production types and production separately for both vowels 
(Fig. 3 and SI Appendix, Fig. S3 with individual data points).

In all conditions, information about both variables could be 
decoded after their respective instruction. When content was 
instructed first, production information was significant for both 
vowels, in delay 2 (/ə/: P = 7.8 × 10−9, /u/: P = 6 × 10−9; corrected). 
When production was instructed first, it could be read out in both 
delays and for both vowels (/ə/: pdel1 = 4.1 × 10−6, pdel2 = 4.8 × 
10−7; /u/: pdel1 = 1.4 × 10−4, pdel2 = 1.6 × 10−9; corrected). In the 
second delay, production information was higher in /u/ than in 
/ə/ trials, but only significantly so when content was instructed 
first (P = 0.026, paired t test; corrected).

Content information was significant in both delays and pro-
duction types when content was instructed first (imagined: pdel1 = 
0.044, pdel2 = 0.044; vocalized: pdel1 = 0.004, pdel2 = 2.7 × 10−5; 
corrected). When production was instructed first, content infor-
mation was only significant in the second delay, again in both 
production types (imagined: P = 0.007, vocalized: P = 1.5 × 10−4; 
corrected). Content information was higher during vocalized than 
imagined trials, in both orders and all relevant delays. This differ-
ence was significant in the second delay when content was 
instructed first (P = 0.007, paired t test; corrected).

In sum, both production and content information were present 
in all individual conditions and, furthermore, higher in those 
conditions with stronger motor involvement.

The Components of Vocalization Are Represented in Cortical 
Speech Areas. We found that vocalization content and production 
were represented in cortical areas typically associated with speech. 
To characterize the cortical distribution of content and production 
information, we repeated the cvMANOVA analysis on the source level 
using a searchlight approach. We then averaged neural information 
within four 500 ms time windows per delay. This analysis revealed 
spatially stable representations of both variables (Fig. 4) with similar 
and broad frontocentral distributions that included M1, SMA, and 
Broca’s area (see SI Appendix, Fig. S4 for information in all areas 
according to the automated anatomical labeling (AAL) atlas).

For higher-order language processes, neural activity is known 
to be left-lateralized, which is debated for speech on the sublexical 

level (28, 33). Our source patterns suggested a clear left lateraliza-
tion. We tested this by computing a lateralization index (LI) for 
both variables (Fig. 5 and SI Appendix, Fig. S5 with individual data 
points). Both variables were left-lateralized in all delays after the 
respective instruction. This was significant for content information 
in the first delay when it was instructed first (P = 0.037; corrected) 
and in the second delay when production was instructed first  
(P = 0.006; corrected). Production information was significantly 
left-lateralized in both delays when production was instructed first 
(pdel1 = 0.048, pdel2 = 0.009; corrected) and in the second delay 
when it was instructed second (P = 0.003; corrected).

Taken together, source analysis showed that both content and 
production had stable left-lateralized representations on the cor-
tical level. This did not only identify the origin of neural infor-
mation within well-known speech-associated areas but also 
excluded confounds due to inherently nonlateralized effects of 
visual cues or electromagnetic artifacts.

The Components of Vocalization Have Different Representational 
Formats. The searchlight analysis indicated spatial stability of the 
coarse cortical distribution of content and production information 
across time. Nonetheless, the representational format, i.e., the 
fine-grained cortical pattern underlying each representation, may 
be dynamic. To test whether neural representations of content 
and production transformed across time, we cross-decoded both 
variables on the sensor level across time (34) (Fig. 6). Stable or 
dynamic representations would yield high or low cross-time 
decoding, respectively. We performed this analysis both on the 
content-first condition and on the production-first condition, as 
well as training on all timepoints of one condition and testing on 
those of the other (Fig. 6, mixed orders).

For statistical testing, we averaged neural cross-information per 
variable and delay such that neural information about content or 
production was in principle accessible at all training and test time-
points included in the statistical analysis (Fig. 6, dashed squares 
and bar plots). Within both delays 1 and 2, there was significant 
cross-temporal information about both variables (production: pdel1 
= 6.3 × 10−5, pdel2 = 2.9 × 10−9; content: pdel1 = 0.027, pdel2 = 1.1 
× 10−5; corrected). There was also significant cross-temporal infor-
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mation between delays 1 and 2 for both variables (production:  
P = 6.3 × 10−5; content: P = 0.012; corrected).

To test whether representations significantly differed between 
time points, we computed an estimate of the expected 
cross-time-information in case of perfectly stable representational 
formats but potentially different information magnitudes (32). 
The cross-temporal stability of production representations was 
lower than expected in all time windows and significantly so 

between delay 1 and 2 and within delay 2 (pdel1/2 = 2 × 10−4, pdel2 = 
7.3 × 10−6; corrected). In contrast, cross-temporal content infor-
mation was never significantly smaller than expected for a tem-
porally stable representation. Thus, while we found evidence for 
a partially dynamic representation of production type, this was 
not the case for content, which appeared stable over time.

To what extent are the neural representations of content and 
production similar? Our cross-time decoding analysis showed that 
both representations evolve differently across time. We took this 
as an indication that these representations are not identical. To 
rigorously estimate the extent of representational overlap, we 
implemented a cross-variable analysis, training the algorithm on 
one variable and testing it on the other. We computed cross-variable 
information in both cue orders and in mixed cue orders where the 
relevant cue was either first or second. Again, we compared the 
observed cross-information to the cross-information expected 
under the assumption of identical representations (Fig. 7).

We found significant cross-information only in delay 1 in the 
order with the relevant cue first (P = 0.046; corrected). In the 
other orders, as information about both variables could only be 
present after the second cue, no cross-information was expected 
in delay 1. While we observed a small amount of cross-information 
in delay 2 of the mixed orders, this was not significant. On the 

A C

DB

Fig. 4. Spatial dynamics of neural information about content production. (A) Production information in both orders. (B) Content information in both orders. 
Left, right, and top views of the cortical distribution of information. Information was averaged in 500-ms intervals, except for the intervals directly after the 
cues, for which the first 250 ms was excluded. (C and D) Averaged information over all three delays where information was available for the respective variable. 
Information strength is color coded, as indicated by the color bar (white: zero or very low information, red: high information).
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Fig.  5. LI of content and production information. The LI (left – right 
hemisphere information) was computed for both delays and both orders. 
Asterisks indicate significance (n = 24, P < 0.05 corrected; t test, one tailed).D
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other hand, cross-information was significantly smaller than its 
expected value in the second delay of all orders (content first: P = 
0.004; both first: P = 0.02; both second: P = 0.01; production 
first: P = 0.002; corrected). Taken together, these results show that 
content and production representations overlap but are not iden-
tical. In our data, isolated content representations (before knowl-
edge of the production type) cannot be distinguished from isolated 
production representations (before knowledge of the content). 
Thus, content and production representations are indistinguish-
able as long as the respective other variable is unknown to the 
participant. However, as soon as both aspects become available, 
their representations show strong differences.

Information about the Components of Vocalization Remains 
Stable across Sessions. Electromagnetic artifacts and other, 
usually visually driven confounders often pollute the data in 
speech studies (35). Our source-level analysis provided evidence 
that content and production information were indeed speech 
related, originating from well-known speech-associated areas. In 
addition, we implemented a control analysis to test whether a 
possible visual cue confound had an impact on our results. Because 
the order of trial blocks was reversed in each participant’s second 
recording session, it was possible to cancel out the visual cue 
effect by decoding across sessions. To this end, we trained the 
cvMANOVA on one session and tested it on the other (Fig. 8).

Decoding across sessions was expected to be more challenging 
than decoding within a session, as the signal-to-noise ratio was 
impacted by additional variability due to head movement between 
the sessions. Nevertheless, we found significant information about 
both content and production in all relevant delays (Fig. 8). There 
was significant content information in both delays when it was 
instructed first (pdel1 = 0.004, pdel2 = 5.1 × 10−5; corrected) and in 
delay 2 when it was instructed second (P = 0.006; corrected). 
Production information was significant in delay 2 when content 
was instructed first (P = 3.4 × 10−8; corrected) and in both delays 
when production was instructed first (pdel1 = 4.8 × 10−5, pdel2 = 
3.4 × 10−6; corrected). Thus, content and production information 
were stable across recording sessions and therefore also not driven 

by a visual, cue-related confound due to the sequential order of 
rule blocks within each session.

Discussion

Our results shed light on the neural mechanisms underlying the 
flexible mapping between the content and motor production of 
human speech. Combining MEG, MVPA, and a factorial task 
design allowed us to dissociate content and production in the 
pre-execution phase, where key processing stages take place  
(7, 36–38) and electromagnetic artifacts of the motor production 
itself are ruled out (35).

Significant content information directly after the first cue sug-
gests that content can be represented independently of a specific 
motor plan, which falls in line with implications from previous 
studies on the lexical and the sublexical syllable level (11–17, 
19–24, 30). Therefore, the actual motor production is not neces-
sary to form a neural representation of content even on the pho-
neme level. However, this does not imply that the content 
representation is completely independent of motor planning.

Content information was higher when vocalized, and produc-
tion information was higher for the vowel /u/, implying a depend-
ence of information strength on the degree of motor involvement. 
As previous studies have shown, overt and covert speech differ in 
terms of executive motor control, including M1 recruitment for 
the efference copy (15, 18, 23), which could account for the higher 
content information in vocalized trials. In addition, the stronger 
phonological code retrieval and encoding in overt speech could 
also contribute to the observed difference of content information 
between the production types (18). The two vowels also differ in 
motor involvement, as /ə/ is a nonarticulated innate-like vowel, 
whereas /u/ is strongly articulated and learned (39). Therefore, the 
stronger motor involvement could account for higher production 
information in the vowel /u/.

We located representations of content and production in the 
frontal and central cortex consistent with well-known 
speech-associated areas (2–7). The extension to temporal cortices 
may be due to efference copies in sensory regions (20–23, 29). 
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Although one may not expect the higher-order language network 
to be recruited in our paradigm (33), we found neural representa-
tions of both content and production to be stronger in the left 
hemisphere. This could either indicate that language capacities 
beyond low-level speech were recruited or that low-level speech 
processes can already be lateralized under specific circumstances. 
Independently of these alternatives, our finding of lateralization 
in an early pre-execution phase suggests that the uncovered neural 
representations were indeed speech or language specific and did 
not reflect general working memory processes.

Our cross-decoding approach provided insights into the tem-
poral dynamics and similarities between the neural representations 
of vocalization components. Our results suggest an overlap of neu-
ral representations of content and production during the first delay, 
when information about only one of the components was available 
to the subjects. One possible explanation for such an overlap could 
be an effort effect where conditions with a higher degree of motor 
involvement elicit higher neural activity than those with a lesser 
degree. Concretely, |u vs. ə| and |vocalized vs. imagined| could both 
correspond to contrasts of |high effort vs. low effort|. This effect 
could reflect priming motor signals preceding vocalizations (7, 40) 

and falls in line with studies finding stronger motor-related acti-
vations in overt than covert speech (15, 18). Alternatively, it could 
also reflect the firing patterns of one or more speech-specific neural 
populations that encode several content- and production-related 
features. Here, effort could drive either the firing rates of individual 
neurons or the number of recruited cells. Further invasive research 
is required to determine whether the same population or spatially 
close and therefore indistinguishable neurons are modulated by 
both content- and production-related effort.

In the second delay, cross-information between content and 
production was similar as in the first delay. However, as both con-
tent and production information were much higher, the rep-
resentations were now clearly distinguishable. Moreover, 
cross-temporal decoding between both delays revealed that the 
content representation remained stable over time, whereas the 
production representation transformed once the content was 
known. Consequently, the divergence of the representations in the 
second delay was likely driven by the transformation of produc-
tion. Taken together, this implies that the production representa-
tion during the second delay was a combination of the initial 
format during the first delay and an additional component. This 
additional component, building up once the content was known, 
may reflect the specific motor program used to prepare the artic-
ulation of the respective vowel, which complies with a description 
of distinct phoneme representations in the SMA (28) and syllable 
representations in the SMA, PMC, and M1 (2) in overt speech. 
In sum, our results show that, when isolated, both representations 
overlap and correlate with the degree of motor involvement. This 
overlap of the representations could be caused by premotor-like 
activity that is modulated by effort but independent of the actual 
execution. While the content representation remains stable, the 
production representation changes once the content is known, 
likely reflecting the addition of a specific motor program.

While natural speech can functionally be decomposed into con-
tent and motor production, there is little evidence for a content 
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dimension on the neural level and even less is known about its 
dynamic interplay with motor production. Most implications for 
a neural content dimension come from studies focusing on the 
lexical or the sublexical syllable level (11–17, 19–24). Temporal 
dynamics have so far only been studied on the lexical level (36–38).  
Yet, the elementary building blocks of speech are phonemes, and 
to our knowledge, all previous research on this level is related to 
motor production (25–29). Our results uncover a neural content 
dimension for phonemes that was present independently of motor 
production and could therefore allow for a generalization between 
production forms. These results accord well with and expand the 
larger body of work on the higher sublexical and lexical levels.

Our findings set the stage for future research to investigate how 
neural codes of isolated phonemes and their motor production 
translate to those embedded in speech. For this, our combined 
approach of MEG, MVPA, and a rule-based paradigm provides 
a fruitful framework, thus opening a window for noninvasive 
speech research in health and disease.

Methods

Subjects. Twenty-four healthy humans with normal or corrected-to-normal vision 
participated in the study (14 male; 21 right handed; mean age: 29 y; 5 y SD). 
All participants gave written informed consent before participation and received 
a monetary reward afterward. The study was conducted in accordance with the 
Declaration of Helsinki and approved by the ethics committee of the University 
of Tübingen.

Behavioral Task and Stimuli. Participants performed a rule-based vocalization 
task. In each trial, one of two vowels (/u/ or /ə/) had to be either overtly or covertly 
vocalized. Vowel and production type were instructed sequentially by visual cues. 
The corresponding rule, i.e., the assignment of the visual cues to their instructed 
content, changed across recording blocks and was indicated before the beginning 
of each block.

Participants self-paced the trials using closed-loop eye movement control. 
Each trial started with an initiation phase of 1,000 ms, during which a white 
fixation spot (diameter: 0.1° of the visual angle) appeared at the center of the 
screen. Once fixation was acquired, the first visual cue (a forward or backward 
white slash, length: 2°, width: 0.25° of the visual angle) appeared for 100 ms, 
instructing either content or production. Then, the fixation spot appeared again 
for a delay period of 2,000 ms. The second visual cue appeared for 100 ms, 
instructing the respective missing variable, followed by a second delay period 
displaying the fixation spot. Dimming the spot for 100 ms served as the go cue 
for the participants’ response. After the go cue, the fixation spot remained on 
screen for 1,500 ms, which gave time for the response of the participants. The 
intertrial interval was 1,000 ms long, indicated by dimming of the fixation spot. 
If fixation was broken after the onset of the first visual cue, the trial was aborted, 
which was indicated by a color change of the fixation spot to red for 500 ms. 
The cue configuration of the aborted trial was repeated at a random position 
later within this block.

Within each recording block, the order of instruction and the meaning of 
each instruction cue were fixed. However, in half of the blocks, the content 
was instructed first, whereas in the other half of the blocks, the production was 
instructed first. Moreover, the assignment of each visual cue to its meaning (con-
tent or production) was different in half of the blocks for each order. These four 
different rules led to four blocks of trials. Each block contained 80 trials, with 
20 per condition (1: /u/ vocalized, 2: /u/ imagined, 3: /ə/ vocalized, and 4: /ə/ 
imagined). The order of the conditions was randomized per block. In total, there 
were 16 different conditions, including the different assignments of the visual 
cues to their instructed content. The 24 possible orders of the four blocks were 
randomly assigned to the participants.

Before the experiment, participants were instructed on how to articulate 
the vowels correctly. Thereby, we made sure that /u/ was clearly articulated, 
whereas /ə/ was produced with minimal involvement of the vocal tract. We 
also made sure that there was no involuntary articulatory movement visible 
for imagined vowels. During the experiment, the participants memorized the 

respective rule before each block. The rule was presented on the screen for as 
long as necessary. Eight training trials preceded each block to ensure correct 
performance. If necessary, the rule was shown again during the block while the 
sequence of trials was paused. All participants performed two MEG sessions 
with 320 trials each. For each participant, the order of blocks from the first 
session was inversed for the second session. During both sessions, the perfor-
mance of the participants was monitored with a microphone and a camera. 
After the experiments, each trial was labeled for production type and in case 
of vocalized trials for vowels.

Data Acquisition. We recorded MEG (Omega 2000, CTF Systems Inc.) with 273 
sensors at a sampling rate of 2,342.75 Hz in a magnetically shielded chamber. 
Participants sat upright with a screen at a 65-cm viewing distance. Stimuli were 
projected onto the screen by an LCD projector (Sanyo PLC-XP41, Moriguchi, 
Japan) with a refresh rate of 60 Hz. The projection was the only source of light 
in the chamber. Continuous head movement was monitored with three coils 
attached to fiducial points. In two participants, head movement could not be 
measured due to technical issues. Eye movements were recorded using an infra-
red eye tracker (EyeLink CL-OC, SR Research Ltd.) at a sampling rate of 1,000 Hz. 
For labeling of trials and vocal onset detection in vocalized trials, the participants’ 
responses were recorded with a microphone integrated into the MEG System, at 
a sampling rate of 2,343.75 Hz. An additional microphone (MD 419, Sennheiser 
electronic GmbH & Co KG) with a sampling rate of 44.1 kHz was used to record a 
higher-quality audio trace for the labeling of production types and vowels. In a 
separate session, we acquired structural T1-weighted MRIs (3 Tesla MAGNETOM, 
Siemens Healthcare GmbH) for source reconstruction based on each participant’s 
individual’s anatomy (resolution: 1 mm3, MPRAGE).

Data Preprocessing. Technically caused channel jumps were detected and cor-
rected and time lags between digital triggers and actual stimulus presentation 
were corrected based on a photodiode signal. For one subject, we excluded a noisy 
channel from the analysis. We low-pass filtered the MEG data at 30 Hz (sixth order, 
zero-phase Butterworth infinite impulse response (IIR) filter), downsampled to 
300 Hz and low-pass filtered the data, again, at 10 Hz. Each trial was baseline 
corrected using the 500 ms preceding the onset of the first visual cue. To reduce 
electromagnetic artifacts, we ran independent component analysis (ICA) on the 
data. To ensure convergence of the ICA algorithm, the data were high-pass filtered 
at 0.05 Hz. However, we applied the resulting unmixing matrix to the original 
data without any high-pass filter and removed artifact components like heartbeats 
and other small muscle activities. Vocal-onset detection in vocalized trials was 
possible for 37 sessions. Audio traces were missing due to technical issues in 
the remaining session. However, performance was closely monitored during the 
recordings and immediately corrected, if participants vocalized before the go cue 
appeared. The available audio traces were smoothed with a median-based sliding 
window model (window size 42.66 ms). A participant-wise threshold served for 
onset detection. For that, the rms of a 1,000 ms period of one of the imagined 
trials was calculated. The respective SD was multiplied by eight and added to 
the rms. In case of low vocalization amplitudes due to very soft voices of a few 
participants, the threshold was manually adjusted by slightly decreasing it until 
the onsets could reliably be detected. The vocalization was correctly performed, 
with an onset after the go cue, in 99% of the trials.

For all subsequent analyses, only correct trials were used. Those were trials 
with the correct production type and, in case of vocalized trials, with the correct 
vowel and a vocal onset after the go cue. For the nine sessions with a missing 
audio trace, only the correct vowel was considered.

Cross-Validated MANOVA. We estimated the amount of neural information 
about the variables of interest in the MEG data with cross-validated MANOVA 
(31, 32). As an extension of the commonly used cross-validated Mahalanobis 
distance, cvMANOVA allows for the simultaneous quantification of the variability 
in neural data due to several variables of interest. We performed 20 repetitions of 
cvMANOVA for each session with fivefold cross-validation. All folds and repetitions 
were subsequently averaged. We first estimated a noise covariance matrix using 
trials from all conditions. Next, we estimated contrasts of beta weights of each 
condition in a cross-validation fold’s training set, which accounted for the “train-
ing” of the model. The “testing” was done by estimating contrasts of beta weights 
in the respective fold’s test set. The dot product of these contrasts, normalized 
by the noise covariance, served as an estimate of the true pattern distinctness:D
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)

,

where Σ−1 is the inverted noise covariance matrix, Ctrain is the contrast vector the 
model is trained on, Ctest is the test contrast vector, and Xtest is the design matrix 
indicating the unique condition of each trial in the test set. Btrain and Btest contain 
the regression parameters of a multivariate general linear model:

Btrain = X−1
train

Ytrain, 
Btest = X−1

test
Ytest,

where Ytrain and Ytest are the training and test data sets. The inverted noise covar-
iance matrix was estimated with the mean of the time window from cue 1 offset 
to go cue onset:

Btraintw = X−1
train

Ytraintw ,

 
Ξ = Ytraintw − XtrainBtraintw ,

 

Σ
−1

=
(
fE − p − 1

)
⋅

(
Ξ
�

Ξ

)−1

,

with fE as the degrees of freedom and p as the number of sources.
Technically, cvMANOVA is a multivariate information-based cross-validated 

encoding approach. However, it shares many similarities with common multi-
variate decoding methods (41). The measure of neural information about the 
variables of interest can, theoretically, also be used to decode these variables on 
individual trials. Therefore, we refer to our results as decoding results.

For all sensor-level analyses, a subset of 137 approximately equally distributed 
sensors were included. This was to ensure a sufficient number of trials in relation 
to the degrees of freedom of the dataset.

Cross-Decoding. With cvMANOVA, we were able to decode across conditions 
by training and testing on different time points, variables, and levels of the 
variables. Therefore, the contrast vectors Ctrain and Ctest were constructed to only 
contain the respective conditions to be trained or tested on. With this approach, 
we decoded across variables by using content (/u/ vs. /ə/) for the construction 
of the training contrast Ctrain and production type (vocalized vs. imagined) for 
the construction of the test contrast Ctest. To estimate content information for 
both production types separately, we constructed Ctrain based on trials including 
both production types, but Ctest based on trials with only one production type, 
respectively. The same principle was applied for separately decoding the produc-
tion type from both vowels. For decoding across time, we used the regression 
parameters Btrain from one time point and Btest from another. We applied this to 
all pairs of time points. For cross-session decoding, we implemented a twofold 
cross-validation such that trials from session 1 and 2 served as training and 
test sets alternately.

Expected Cross-Decoding. To estimate a benchmark for the overlap between 
representations, we computed the expected cross-information (32). As the max-
imally possible amount of shared information between contexts depends on the 
information available in each individual context, the strength of the shared rep-
resentation must be compared to the strength of both representations. Therefore, 
we estimated the expected cross-decoding

E12 =
√

||D1D2
|| ⋅ sign

(
D1
)
⋅ sign

(
D2
)
,

where D1 and D2 denote the pattern distinctness in the two contexts. If the 
representations were identical, the cross-decoding D12 would approach E12. 
Conclusively, cross-decoding values smaller than E12 indicate that the representa-
tions are not identical and, therefore, not fully overlapping.

Source Estimation. We generated individual single-shell head models (42) 
based on each subject’s structural T1-weighted MRI. Using linear spatial filtering 
(43), we estimated three-dimensional MEG source activity at 457 equally spaced 
locations ~7 mm beneath the skull. For searchlight analysis, we used the three 
dipole directions of each source and the respective immediate neighbors. The 
LI was computed by averaging the searchlight results for each hemisphere and 
subtracting right from left. Cortical areas were mapped according to the AAL atlas 
(44), and neural information was averaged for each area of the left hemisphere 
(SI Appendix, Fig. S4). For cross-session decoding, the three orientations were 
added, and a subset of 229 equally spaced sources was used for decoding.

Statistical Analysis. Neural information was averaged within two different 
time windows (delay 1: from 250 ms after cue 1 offset to cue 2 onset; delay 
2: from 250 ms after cue 2 offset to go cue onset). Cross-temporal information 
within delay 1 was averaged over all conditions in which the relevant cue was 
instructed first, as information could only be present in these conditions. To esti-
mate cross-temporal generalization between delays, we averaged an off-diagonal 
time window over those conditions where the relevant cue was presented first, as 
well as those mixed-order conditions where the relevant cue was presented first 
in one condition but second in the other. To estimate cross-temporal information 
within delay 2, we averaged data from all cue orders. For testing the significance 
of neural information and cross-information to be larger than 0, we employed 
one-tailed one-sample t tests. One-tailed paired t tests were applied for test-
ing cross-time and cross-variable information to be smaller than the expected 
cross-information. For the comparison of content information in both production 
types and vice versa, we used two-tailed paired t tests. All P-values were false 
discovery rate (FDR) corrected for the number of tested time intervals (45).

Potential Cue Confound. We identified the source of a potential confound: 
due to the blocked design, in combination with possible nonstationarities in the 
dataset, content and production information could theoretically be influenced by 
representations of the physical cue itself, even though the cue appearance and its 
meaning were counterbalanced. Briefly, if noise led to independent shifts of the 
neural activity patterns of both cue options, this could mistakenly be identified as 
information about the variable indicated by the cue. To make sure that our results 
were not dependent on this potential confound, we took two measures. First, we 
excluded the 250 ms after cue onset in both time windows used for statistical 
analysis, as this was the time period that would likely be affected. Second, we 
performed cross-session decoding to confirm that content and production infor-
mation were present if the possible cue confound was accounted for.

Visualization. For all line plots, data were smoothed with a 100-ms Hanning 
window (full width at half maximum).

Software. All analyses were performed using the Fieldtrip toolbox (46) and 
custom code in MATLAB.

Data, Materials, and Software Availability. Preprocessed MEG data and 
analysis code to reproduce all reported results are publicly available at https://
osf.io/5c43h/ (47).
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